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Personal comfort models are used to predict thermal comfort responses at the individual level rather than 
predicting the average thermal comfort responses for large populations. These models, data-driven in nature, need 
to be trained on large amounts of occupant comfort feedback and sensor data to achieve accurate predictions. 
However, collecting such data is often expensive and labor-intensive in reality. To address this, we proposed a 
data-efficient active transfer learning (ATL) framework to improve the performance of personal comfort models 
under limited data. To demonstrate the validity of this framework, we developed a base Convolutional Neural 
Network-Long Short-term Memory (CNNLSTM) model alongside two transfer learning models utilizing feature 
extraction (TL-CNNLSTM-FE) and fine-tuning (TL-CNNLSTM-FE) approaches, enhanced by a novel active learning 
strategy. Using these models, three comfort prediction tasks (i.e., thermal preference, thermal acceptability, and 
air movement preference) were performed by transferring the knowledge from the ASHRAE Global Thermal 
Comfort Database II to a limited dataset collected in the tropics. Empirical results indicate that the active transfer 
learning framework proposed was able to consistently outperform the base and transfer learning models using 
only less than 10% of the training data for all personal comfort tasks, highlighting the effectiveness of this 
strategy. The implications of this work are especially useful for the research community working on the practical 
applications of data-efficient machine learning approaches for personal thermal comfort predictions.
1. Introduction

There is a growing trend in learning and predicting individual ther-

mal comfort needs through data gathered from everyday environments. 
Personalized thermal comfort models play a pivotal role in this shift, 
aiming to predict thermal comfort responses at the individual level 
rather than relying on the average response of large populations. Unlike 
traditional models, including Predictive Mean Vote (PMV) and adap-

tive models [1], personal comfort models are designed to account for 
unique differences between each occupant, allowing for a more pro-

found comprehension of their distinct thermal comfort needs in the 
buildings. Such information not only enhances occupants’ comfort but 
also contributes to energy efficiency by ensuring that the building sys-

tems operate optimally to meet specific comfort requirements [2]. A 
notable example is occupant-centric control applications, which inte-

grate occupants’ personal comfort and preferences in building controls 
[3]. These include personalized lighting control [4] to improve visual 
satisfaction and lighting energy use, personalized plug load control [5]

based on occupancy and personalized plug load use preferences, as well 
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as occupant-centric Heating, Ventilation and Air Conditioning (HVAC) 
controls [6] based personal thermal comfort and occupancy to improve 
the efficiency and effectiveness of HVAC systems. Past studies suggest 
that smart HVAC systems can improve energy savings and thermal com-

fort by more than 15% [7], while employing an appropriate comfort 
model for HVAC controls can lead to further energy savings exceeding 
10% during simulations [8]. Meanwhile, in real-world implementations, 
personal preference-based HVAC control systems have demonstrated re-

markable energy savings, ranging from 28% to 35% [9], proving the 
effectiveness of personal comfort models in improving energy efficiency.

Personal comfort models, being inherently data-driven machine 
learning models, require two primary categories of data for their de-

velopment. (1) The first category includes objective measurements, 
including indoor and outdoor environmental conditions, HVAC oper-

ations, building occupancy, and occupants’ physiological conditions. 
These measurements are obtained through various sensing and com-

munication technologies. (2) The second category involves collecting 
occupant comfort feedback through subjective surveys. This feedback 
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indicates occupants’ thermal preference, thermal acceptability, or ther-

mal sensation based on the thermal conditions they experience.

While recent developments in the Internet of Things (IoT) and sens-

ing technologies have enabled the cost-efficient and effective collection 
of various sensor measurements, challenges persist during the collection 
of occupant comfort feedback, also known as user-labeled data. These 
challenges are primarily due to the intrusive and labor-intensive nature 
of the data collection process, often leading to survey fatigue during 
the data labeling. Researchers also reported difficulties determining an 
appropriate frequency to collect comfort feedback from the study par-

ticipants [10]. A recent study further quantified this challenge, finding 
that approximately 250–300 data points per study participant are nec-

essary for achieving accurate predictions of personal thermal comfort, 
highlighting the significant volume of data needed [11]. Therefore, it is 
essential to strike a balance between gathering sufficient data to de-

velop accurate personal comfort models while minimizing the effort 
required from respondents. This challenge highlights the crucial need 
for developing more data-efficient approaches that can accurately pre-

dict personal comfort with less reliance on extensive comfort feedback.

In this paper, our objective is to reduce the need of collecting large 
sums of sensor and occupant comfort survey data to develop data-

efficient personal comfort models with satisfactory model performance.

The study contributions are outlined as follows:

• Introduced a novel active transfer learning framework that inte-

grates active learning and transfer learning approaches to improve 
the performance of personal comfort predictions using limited data.

• Presented a comprehensive comfort evaluation for three comfort 
tasks (i.e., thermal acceptability, thermal preference, and air move-

ment preference) by transferring the knowledge from one of the 
largest global thermal comfort databases (i.e., ASHRAE Global 
Thermal Comfort Database II) to our limited dataset collected in 
the tropics.

• Developed two transfer learning approaches (i.e., feature extraction 
and fine-tuning) based on a CNNLSTM architecture and evaluated 
them with different amounts of training data under air-conditioned 
(AC) and natural ventilation (NV) conditions.

The remainder of this paper is structured as follows: Section 2 re-

views the existing personal comfort models and data-efficient machine 
learning approaches for personal comfort models. Section 3 provides 
details on the active transfer learning methodology, including the uti-

lized datasets, the architecture of the base CNNLSTM model, transfer 
learning approaches, and the novel active learning strategy developed. 
Section 4 presents the results and analysis, evaluating the impact of ac-

tive transfer learning strategy and different amounts of training data 
on the performance of personal comfort models. Finally, Section 5 con-

cludes the paper by summarizing the key findings of this research.

2. Related work

2.1. Development of personal comfort models

In recent years, there has been a notable rise in the popularity of 
data-driven thermal comfort modeling, leading to many efforts leverag-

ing machine learning (ML) techniques for predicting personal thermal 
comfort. Popular machine learning models, such as gradient boosting 
[12], random forest (RF) classification [13], logistic regression (LR) 
[14], support vector machine (SVM) [15], and have been employed 
to predict personal thermal comfort based on different thermal met-

rics. Notably, Luo et al. [12] performed a comprehensive comparison of 
nine common machine learning algorithms for predicting thermal sen-

sation using the ASHRAE Comfort Database II. Their findings indicated 
that machine learning models exhibited superior accuracy compared to 
traditional PMV models, with Random Forest outperforming other al-
2

gorithms. This observation particularly aligns with Kim et al.’s review 
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of different models [10], emphasizing a significant improvement in pre-

dictive accuracy (17-40%) when compared with conventional comfort 
models (i.e., PMV and adaptive models). This underscores the need for 
adopting more personalized approaches for predicting thermal comfort.

The data used for developing personal comfort models were obtained 
through (1) various sensor measurements and (2) occupant comfort 
feedback via surveys. Sensor measurements can be categorized under 
five broad categories: indoor environmental measurements, outdoor 
weather measurements, occupant-related measurements, temporal mea-

surements, and system (i.e., HVAC) related measurements. Indoor envi-

ronmental measurements include indoor temperature (𝑇𝑖𝑎), indoor rel-

ative humidity (𝑅𝐻𝑖), indoor (𝐶𝑂2) levels, indoor radiant temperature 
(𝑇𝑟), indoor air velocity (𝐴𝑉𝑖). Outdoor weather measurements often in-

volve collecting outdoor humidity, outdoor air temperature (𝑇𝑜𝑎), solar 
radiation, wind speed, and wind direction. Both indoor and environ-

mental measurements have been widely used to predict thermal pref-

erences [16], thermal sensations [17], and thermal acceptability [18]. 
Occupant-related measurements encompass both physiological and be-

havioral data. To incorporate occupant physiological measurements into 
thermal comfort modeling, specialized sensors are utilized to capture pa-

rameters such as skin temperatures, heart rate, and metabolic rate [19]. 
Furthermore, occupant activity levels (i.e., exercise habits) and clothing 
levels are collected as part of behavioral measurements [20]. Temporal 
measurements, such as the day of the week or specific hours of the day, 
represent the variations over time in the thermal comfort levels experi-

enced by occupants Finally, HVAC-related measurements represent the 
operational status of indoor environments, encompassing variables such 
as damper position, supply airflow rate, and variable air volume control 
settings [10].

In addition to sensor measurements, the development of personal 
thermal comfort models necessitates gathering feedback on occupants’ 
comfort using various methods. Surveys are frequently employed, uti-

lizing a range of interfaces such as wearables or thermostats to collect 
comfort feedback efficiently [21]. Occupants’ comfort feedback can be 
collected based on their thermal acceptability (Acceptable, Unaccept-

able), thermal preference (Cooler, No change, Warmer), and thermal 
sensation (7-point scale Predicted Mean Vote (PMV) index). Further-

more, air movement preferences (More, No Change, Less) and air move-

ment acceptability (Acceptable, Unacceptable) were also considered as 
comfort measures for mixed-mode buildings in recent studies [22].

2.2. Active learning and transfer learning approaches for personal comfort 
models

Data-efficient machine learning approaches have been increasingly 
gaining attention for personal comfort modeling, addressing the chal-

lenges associated with collecting large amounts of training data to 
achieve accurate personal comfort models [23]. Among the small num-

ber of studies available, these approaches enhance the performance of 
traditional machine-learning models when dealing with limited training 
data. This is especially useful as collecting frequent occupant comfort 
feedback (i.e., user-labeled data) is expensive, labor-intensive, and of-

ten impractical for extended data collection periods.

Active learning (AL) is a promising approach for predicting personal 
comfort with limited training data. AL is used to identify the most in-

formative data points for user labeling, thereby potentially reducing the 
frequency of user comfort feedback collection. A pioneering study [24]

demonstrated that AL could reduce user labeling efforts by up to 46% 
in personalized thermal comfort models during a field implementation. 
The same study also implemented a feature selection algorithm [25] to 
understand and filter the useful input features before applying AL as 
part of a data-efficient minimum sensing strategy. The application of 
AL has been extended to HVAC control systems, with results indicating 
a substantial decrease in labeling effort (about 31.0%) while still main-

taining high levels of personal comfort and energy savings compared to 

conventional controls [26].
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Fig. 1. The ASHRAE Global Thermal Comfort Database II (left) and Singapore BCA Dataset (right) serve as the source and target domains in this study, respectively.
Transfer Learning (TL) presents an alternative strategy involving the 
application of pre-trained models from an information-rich (source) do-

main to a related task in a different (target) domain where labeled data 
is limited or unavailable. Gao et al. [27] investigated TL for predicting 
thermal comfort across different cities. They utilized multilayer per-

ception (MLP) models trained on data from various climatic regions 
and applied them to a (target) building containing scarce data. Their 
findings indicated that models pre-trained on comparable climate zones 
demonstrated improved prediction accuracy. Similarly, Somu et al. [28]

developed a transfer learning-based Convolutional Neural Networks-

Long Short Term Memory (CNNLSTM) model for thermal preference 
prediction. The resulting model reported 56% accuracy, using the same 
source and target domains with [27]. Furthermore, Park et al. [29] in-

troduced an ensemble TL approach, leveraging knowledge from diverse 
thermal conditions and physiological data to predict thermal comfort 
preferences accurately for specific subjects with sparse data. Finally, Li 
et al. [30] proposed a transfer learning model using TrAdaBoost and in-

troduced an automatic weighting strategy to adjust the weights of the 
training data from the source domain for performance improvement. 
To date, only one study [31] has attempted to combine both active 
and transfer learning for predicting personal thermal comfort responses. 
The study involved using a ridge regression model to learn the thermal 
comfort distribution of a group of occupants within a building before 
transferring the model to a different group of occupants from the same 
building by leveraging limited queries. However, the study is limited as 
it still requires collecting large amounts of comfort feedback data from 
other occupants in the building initially before it can be transferred to 
a new occupant within the same building, significantly reducing the ap-

proach’s scalability when applied at a large scale.

Our study extends upon past studies by proposing a novel active 
transfer learning framework that leverages one of the largest global 
comfort datasets, the ASHRAE Global Thermal Comfort Database II, to 
train the initial model on the personal comfort preferences of occu-

pants from different buildings. The model is subsequently transferred 
to a new group of occupants using a limited comfort dataset collected 
from the new building. This proposed method significantly improves the 
approach’s scalability when applied at a large scale. Additionally, we 
further demonstrated the robustness and effectiveness of the approach 
by being the first study to perform a comprehensive evaluation of dif-
3

ferent active transfer learning strategies based on a diverse range of 
comfort tasks (i.e., thermal preference, thermal acceptability, and air 
movement preference) using a real-world comfort dataset collected in 
the tropics.

3. Methodology

3.1. Dataset description

Two thermal comfort datasets were utilized for this study. The first 
dataset, the ASHRAE Global Thermal Comfort Database II [32], serves as 
the information-rich source domain, containing an extensive amount of 
thermal comfort data collected from multiple buildings across different 
climatic zones. The second dataset, the Singapore Building Construction 
Authority (BCA) testbed dataset [22], represents the information-poor 
target domain, consisting of a limited amount of thermal comfort data 
collected from a single building in a tropical climate. Further elaboration 
on the data collection process and the fields present in both datasets is 
provided in the subsequent subsections and depicted in Fig. 1.

3.1.1. Source domain: ASHRAE global thermal comfort database II
The ASHRAE Global Thermal Comfort Database II currently stands 

as one of the most comprehensive open-source repositories for ther-

mal comfort research, encompassing a compilation of 34 field-measured 
thermal comfort studies [32]. This database comprises data collected 
from over 800 commercial and residential buildings, with contributions 
from researchers representing 23 countries and 39 institutions across 
16 different climate zones. Each dataset incorporated into the database 
undergoes a rigorous quality assurance process to ensure its suitabil-

ity for robust hypothesis testing. Various steps are taken to maintain 
quality control, including visualizing field variables to identify outliers, 
generating cross-plots between highly correlated variables (e.g., ther-

mal comfort and thermal sensation) to detect inaccurately coded data, 
and randomly sampling from each study to ensure consistency between 
the original and standardized database.

In cases where certain data fields were absent from the dataset, 
those fields were replaced with null values to prevent misrepresentation. 
Through this process, a total of 81,846 data entries, containing informa-

tion about the building’s indoor and outdoor environmental conditions, 
as well as study participants’ demographic information, occupancy pat-
terns, and subjective comfort votes (i.e., thermal acceptability, thermal 
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Table 1

Summary of operating conditions in the Singapore BCA Dataset.

Mode Description Operating 
Condition

Room Temperature 
Setpoint (◦𝐶)

Ceiling Fan 
Speed (m/s)

AC Activating the ambient VAV system 
with traditional ceiling diffusers

1 24 Off (0.15)

2 24 Off (0.15)

3 26 Low (0.45)

4 26 Medium (0.90)

NV HVAC System switched off with the 
plenum windows fully open

5 Free-Floating Off (0.15)

6 Low (0.45)

7 Medium (0.90)

8 High (1.15)
comfort, thermal preference, air movement preference, and air move-

ment acceptability), were retained. Additionally, the data from the origi-

nal ASHRAE RP-884 database is also included, resulting in 107,463 total 
entries.

3.1.2. Target domain: Singapore BCA testbed dataset

The BCA testbed is a 50 𝑚2 experimental facility consisting of six 
desks, an extra desk for a researcher, and an operable window located 
on the facade’s west side. The operable window allows the testbed to 
operate as an air-conditioned or naturally ventilated space. The testbed 
is conditioned by a variable air volume (VAV) system and a stand-alone 
air-handling unit with its own building management system for greater 
precision in controlling space conditions. Additionally, the indoor envi-

ronmental conditions are monitored by a network of advanced sensors 
collecting information about indoor relative humidity, indoor air tem-

perature, air velocity, globe temperature, carbon dioxide levels, total 
volatile organic compounds (TVOC), and indoor fine particulate matter 
(𝑃𝑀2.5). Real-time measurements of outdoor weather conditions are ob-

tained through a weather station, including outdoor relative humidity, 
outdoor air temperature, outdoor fine particulate matter (𝑃𝑀1 , 𝑃𝑀2.5, 
𝑃𝑀10), and atmospheric pressure.

To collect occupants’ subjective comfort votes under different venti-

lation conditions, a data collection effort was conducted in June 2022 
[22]. Fifty-eight tropically acclimatized (residing in Singapore for at 
least the past three years) participants (50% males and 50% females), 
aged between 21 and 60, took part in the data collection. Through-

out the data collection period, the indoor conditions in the testbed 
were altered every thirty minutes, following a randomized sequence, 
to one of eight distinct settings. Half of these settings were categorized 
under Natural Ventilation (NV) mode, while the remaining fell under 
Air-Conditioned (AC) mode. At the beginning of each setting, adjust-

ments were made manually to the room temperature setpoint and ceiling 
fan speed, following the specifications outlined in Table 1, to establish 
distinct operating conditions. A brief thermal comfort survey was dis-

tributed via wearable devices assigned to participants at the onset of 
each setting, at the 5th and 15th minute intervals, to gather information 
regarding their thermal acceptability, preference, and air movement 
preference under the current conditions. Additionally, a comprehensive 
Indoor Environmental Quality (IEQ) survey was conducted at the 25th-

minute mark using the Qualtrics online platform to assess participants’ 
current levels of thermal, air quality, acoustic, and visual comfort. This 
data collection effort resulted in 1,745 entries collected over the course 
of the study period.

3.2. Data processing and analysis

In this section, we outline the data processing and analysis steps un-

dertaken in our study.

We initiate the data processing step by retaining features common 
to both the ASHRAE Global Thermal Comfort Database II and the BCA 
Testbed Dataset, and those features that offer valuable insights into oc-
4

cupants’ thermal and air movement comfort conditions. These features 
provide information about the building’s indoor and outdoor environ-

mental conditions, such as indoor room temperature (𝑇𝑖𝑎), indoor rela-

tive humidity (𝑅𝐻𝑖), air velocity (AV), globe temperature (𝑇𝑔), outdoor 
temperature (𝑇𝑜𝑎), outdoor relative humidity (𝑅𝐻𝑜), and the room’s 
ventilation mode (i.e., air-conditioned or naturally ventilated).

Following this step, we addressed the missing data issue in some of 
the fields within the ASHRAE Global Thermal Comfort Database II. An 
imputation step is employed to populate the missing data. Despite var-

ious imputation algorithms proposed previously [33], we opted for the 
MissForest imputation algorithm due to its widespread acceptance and 
effectiveness in handling missing tabular data [34]. The imputation pro-

cess begins by focusing on the column with the lowest amount of missing 
values (referred to as the candidate column) and initially imputing the 
missing values in other columns using their mean values. Subsequently, 
an RF model is trained, where the candidate column’s missing values 
are predicted based on the values in the other columns. This process is 
repeated for all of the columns with missing values, iteratively improv-

ing the imputed dataset until the difference between successive imputed 
datasets becomes negligible.

After imputing the missing data within the ASHRAE Global Thermal 
Comfort Database II, an analysis was performed on the subjective votes 
reported by the study participants in both the ASHRAE Global Database 
II and BCA Testbed Dataset (refer to Fig. 2). By examining the distri-

bution of reported labels in Fig. 2, it can be observed that the study 
participants in the ASHRAE Global Database II tend to more frequently 
report that they were satisfied with the current environmental condi-

tions by indicating “Acceptable” (72%) when asked about their thermal 
acceptability, followed by “Unacceptable” (28%). Similarly, for thermal 
comfort preferences, 50% of the responses indicated “No Change” fol-

lowed by “Cooler” at 32.9% and finally “Warmer” at 17.1%. A similar 
trend is observed when asked about their air movement preferences, 
with the majority of responses indicating “No Change” (55%), followed 
by “More” at 36% and “Less” at 9%. This trend is also reflected in the 
subjective votes reported by the study participants in the BCA testbed, 
with the majority of responses reporting “No Change” when asked about 
their air movement and thermal preferences, and “Acceptable” when 
asked about their thermal acceptability. This imbalance between the 
comfort votes reported by the study participants may lead to the de-

velopment of a comfort prediction model that is heavily biased toward 
the majority class (i.e., No Change or Acceptable), and may fail to cor-

rectly identify conditions which are uncomfortable for the occupants. 
Therefore, we addressed the imbalance in the subjective labels by ap-

plying the Synthetic Minority Over-sampling Technique (SMOTE) on the 
ASHRAE Global Thermal Comfort Database II to rebalance the instances 
belonging to the minority classes.

3.2.1. Synthetic minority over-sampling technique (SMOTE)

The SMOTE algorithm, first proposed by [35], is an oversampling 
method designed to address the issues associated with class imbalance 
by creating synthetic instances from the minority class. The algorithm 
begins by sampling the 𝑘 nearest neighbors of a instance in the minority 
class 𝑋𝑗 and creating a new instance 𝑃𝑘 through a random interpola-
tion process between 𝑋𝑗 and one of the nearest neighbors, denoted as 
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Fig. 2. Label distribution of the comfort feedback for thermal acceptability, thermal preference, and air movement preference reported in the ASHRAE Global Thermal 
Comfort Database II and the Singapore BCA Dataset. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
𝑍𝑗𝑘. This process can be mathematically represented using the follow-

ing equation [36]:

𝑃𝑘 =𝑋𝑗 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ (𝑍𝑘𝑗−𝑋𝑗 ). (1)

In essence, the SMOTE algorithm functions by creating new instances 
along the line segments connecting 𝑥𝑗 with the selected neighbor 𝑍𝑗𝑘. 
Hence, the fundamental assumption underlying the algorithm is that the 
instances lying between two neighboring instances in the minority class 
also belong to the same minority class.

Given that the ASHRAE Global Thermal Comfort Database II con-

tains a combination of both nominal and continuous variables, this 
study adopted the SMOTE-Nominal Continuous algorithm, which ex-

tends upon the SMOTE algorithm, to perform oversampling of the mi-

nority class within the dataset. The oversampled version of the ASHRAE 
Global Thermal Comfort Database II is used for model training in the 
subsequent sections of this study.

3.3. Problem formulation

The task of predicting occupants’ thermal preference, thermal ac-

ceptability, and air movement preference can be framed as a classifica-

tion problem. This entails defining a probabilistic function that assigns 
a probability score 𝑃 (𝑦|𝑋), indicating the likelihood that a sample be-

longs to a specific class label 𝑦 given the sample’s input features 𝑋. 
The input feature 𝑋, in this case, represents a tuple containing the en-

vironmental features, while the class label 𝑦 depends on whether the 
model is predicting the occupants’ thermal preference 𝑦 ∈ No Change, 
Warmer, Cooler, thermal acceptability 𝑦 ∈ Acceptable, Unacceptable, or 
air movement preference 𝑦 ∈ No Change, More, Less.

The probabilistic function 𝑓 (.) is obtained by learning from a train-

ing dataset 𝐷𝑡𝑟𝑎𝑖𝑛 before validating its performance on a test dataset 
𝐷𝑡𝑒𝑠𝑡. In the case of a regular classification problem, both 𝐷𝑡𝑟𝑎𝑖𝑛 and 
𝐷𝑡𝑒𝑠𝑡 originate from the same domain 𝐷. However, in the context of 
transfer learning, the problem extends to involve two separate domains: 
the source domain 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 and the target domain 𝐷𝑡𝑎𝑟𝑔𝑒𝑡.

The source domain 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 is typically defined as the information-

rich domain where a large number of labeled instances are readily avail-

able, while the information-poor target domain 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 tends to contain 
only a limited number of labeled instances due to the high cost of data 
collection and human labeling (i.e., |𝐷𝑠𝑜𝑢𝑟𝑐𝑒| >> |𝐷𝑡𝑎𝑟𝑔𝑒𝑡|). Therefore, 
the motivation behind transductive transfer learning involves enhanc-

ing the predictive performance of the probabilistic function 𝑓 (.) in the 
target domain 𝐷𝑡𝑎𝑟𝑔𝑒𝑡, by leveraging on the vast amount of labeled in-

stances in the source domain 𝐷𝑠𝑜𝑢𝑟𝑐𝑒, and applying that knowledge in 
5

the target domain 𝐷𝑡𝑎𝑟𝑔𝑒𝑡.
3.4. Base model (CNNLSTM) architecture

The base model architecture chosen for this study is based on the 
Convolutional Neural Network-Long Short-term Memory (CNNLSTM) 
model. This decision is due to the model’s ability to effectively cap-

ture the spatio-temporal relationship between different time-series vari-

ables of the building’s indoor and outdoor environmental conditions to 
perform accurate comfort modeling [28]. Additionally, the model also 
allows us to freeze different parts of the CNN and LSTM layers to facil-

itate the implementation and evaluation of different transfer learning 
strategies.

Comprising a convolutional layer, two LSTM layers, two dense lay-

ers, and an output layer, the CNNLSTM model architecture is designed 
to capture the spatiotemporal characteristics of the building’s environ-

mental features 𝑋 to predict the most likely response in terms of the 
occupants’ thermal preference, thermal acceptability, or air movement 
preference 𝑦.

A forward pass into the CNNLSTM model involves passing an input 
feature tuple 𝑋 of dimension (7, 1) into a 1D-convolutional layer with 
a filter size of 128 and kernel size of 5, to result in an output tensor of 
dimension (7, 128). In this case, the convolutional layer functions as a 
feature extractor, discerning the spatially invariant structures within in-

put 𝑋. To prevent overfitting, a dropout layer with a probability of 0.1 
is introduced after the 1D-convolutional layer. The spatial features ex-

tracted from the convolutional layer are subsequently passed through 
two LSTM layers with 256 neurons to learn the temporal structures of 
the input data. A recurrent dropout probability of 0.1 is also applied to 
each LSTM layer to prevent overfitting. Following this step, the output 
tensor from the second LSTM layer is flattened and directed into two 
fully connected dense layers. These layers aimed to obtain a higher-

order representation of the processed features and enhance the separa-

bility of the instances into the different labels found within the training 
dataset. Both dense layers employ the rectified linear unit (ReLU) ac-

tivation function and are initialized using the Glorot uniform weight 
initialization method, with the first dense layer having 64 neurons and 
the second layer containing 16 neurons.

The output of the second dense layer is finally fed into the final 
output layer with the same number of neurons as the number of user 
response labels (i.e., 3 neurons for thermal preference and air move-

ment preference, and 2 neurons for thermal acceptability). The output 
layer utilizes a softmax activation function to yield a probability distri-

bution of the target labels, where the predicted label 𝑦 is determined by 
identifying the label with the highest predicted probability scores.

The training process of the base model architecture employs the 
Adam optimizer with a learning rate of 0.001 and utilizes the cate-
gorical cross-entropy loss function to calculate the model’s prediction 
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Fig. 3. Model architecture of the base CNNLSTM model with model hyperpa-

rameters.

error against the training data. The detailed architecture of the proposed 
CNNLSTM model is illustrated in Fig. 3.

3.5. Transfer learning model architecture

Utilizing the base CNNLSTM model architecture described in the 
previous subsection, two transductive transfer learning model architec-

tures are developed for this study: transfer learning using fine-tuning 
(TL-CNNLSTM-FT) and transfer learning using feature extraction (TL-

CNNLSTM-FE).

The training process of the TL-CNNLSTM-FT model begins by initial-

izing a base CNNLSTM model, where the weights of each layer are ran-

domly initialized using the Glorot uniform weight initialization method. 
This model is subsequently trained on the large amount of labeled data 
from the ASHRAE Global Thermal Comfort Database II (source domain), 
where the weights of the CNNLSTM layers are iteratively updated over 
100 epochs through backpropagation. This process gradually reduces 
the model’s prediction error in inferring the occupants’ state of ther-

mal comfort (i.e., thermal preferences, thermal acceptability, and air 
movement preferences), based on indoor and outdoor environmental 
conditions. Once the model has been pre-trained on the ASHRAE Global 
Thermal Comfort Database II (source domain), the TL-CNNLSTM-FT 
model is adapted to perform a similar task on the BCA Testbed Dataset 
(target domain) by retraining the model on small amounts of labeled 
data from the BCA dataset. During this retraining process, the weights 
of all layers are updated during the backpropagation process to fine-tune 
and improve the model’s predictive performance in the target domain. 
Given that the predictive task between the source and target domain 
is identical, the final output layer of the pretrained TL-CNNLSTM-FT 
model was retained during the retraining process, instead of being re-

placed with new dense layers.

The TL-CNNLSTM-FE model follows a similar training process as the 
TL-CNNLSTM-FT model by first pre-training on the labeled data in the 
ASHRAE Global Thermal Comfort Database II (source domain), before 
retraining on the BCA Testbed Dataset (target domain). However, the 
6

key difference between both models lies in the retraining process, where 
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instead of updating the weights for all model layers during the back-

propagation step, only the weights of the final dense layers are updated, 
while the convolutional and LSTM layer weights are frozen. This retrain-

ing approach essentially allows the model to retain its feature-extracting 
abilities based on what was learned from the source domain.

Despite their differences, both models leverage the knowledge ob-

tained from the information-rich source domain and adapt it to an 
information-poor target domain. This is achieved by improving the mod-

el’s ability to extract informative high-level representations from the 
input features through parameter sharing in the pre-training step be-

fore enhancing the model’s predictive performance in the target domain 
through retraining. Fig. 4 illustrates the model architectures of the TL-

CNNLSTM-FT and TL-CNNLSTM-FE models, respectively.

3.6. Active transfer learning framework

To further enhance the transfer learning model’s performance in both 
data efficiency and predictive accuracy, we introduced the concept of 
active learning during the model’s retraining step to form the active 
transfer learning framework.

Specifically, within the model retraining step, an active learning 
algorithm is applied to the pool of unlabeled instances in the target do-

main to identify the most informative instances for human annotation 
and subsequent model retraining. The Query-By-Committee (QBC) sam-

pling algorithm was adopted for this study due to findings from a prior 
study, which found that the QBC sampling algorithm was able to out-

perform other popular AL algorithms, such as Uncertainty Sampling, in 
reducing human annotation cost when applied to a similar dataset [24].

The QBC algorithm begins by defining a panel of classifiers, denoted 
as 𝐶 = 𝜃(1), ..., 𝜃(𝐶), which are trained on random samples of the labeled 
pool 𝑃𝑙𝑎𝑏𝑒𝑙𝑒𝑑 . By applying this panel of classifiers to the unlabeled pool 
𝑃𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 , the unlabeled instance with the highest level of disagreement 
among the panel’s predictions is considered to be the most informative 
instance and chosen for human labeling. The newly labeled instance 
is subsequently removed from 𝑃𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and incorporated into 𝑃𝑙𝑎𝑏𝑒𝑙𝑒𝑑

before retraining the panel of classifiers on the updated 𝑃𝑙𝑎𝑏𝑒𝑙𝑒𝑑 for the 
next selection round. The vote entropy metric by [37] is employed in 
this study to quantify the degree of disagreement among the panel. The 
unlabeled instance 𝑋∗ is chosen for human labeling based on the results 
of the following equation:

𝑋∗
𝑄𝐵𝐶

= argmax
𝑋

−
𝐿∑
𝑖

𝑛(𝑦𝑖)
|𝐶| 𝑙𝑜𝑔

𝑛(𝑦𝑖)
|𝐶| (2)

where |𝐶| represents the number of classifiers in the panel, 𝐿 represents 
the number of class labels, and 𝑛(𝑦𝑖) denotes the number of classifiers 
categorizing instance 𝑋 under class 𝑦𝑖.

Within our active transfer learning framework, we defined the 
ASHRAE Global Thermal Comfort Database II as our initial 𝑃𝑙𝑎𝑏𝑒𝑙𝑒𝑑 , 
where a panel of classifiers was initially trained. Subsequently, we eval-

uated the unlabeled instances in the BCA Testbed Dataset, defined as 
our unlabeled pool 𝑃𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 . By identifying the most informative in-

stance in 𝑃𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 using the above equation, the instance was chosen 
for human labeling and included in 𝑃𝑙𝑎𝑏𝑒𝑙𝑒𝑑 for panel retraining and the 
next evaluation round.

The incorporation of active learning within the transfer learning 
framework enables us to focus the model retraining process on the most 
distinctive instances (i.e., most informative instances) in the target do-

main compared to the source domain, thereby enhancing the model’s 
transferability in the new domain. Fig. 5 illustrates the model archi-

tecture of the proposed active transfer learning framework based on 
the TL-CNNLSTM-FT and TL-CNNLSTM-FE model architectures (ATL-
CNNLSTM-FT and ATL-CNNLSTM-FE).
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Fig. 4. Model architectures of the TL-CNNLSTM-FT and TL-CNNLSTM-FE with hyperparameters.
7

Fig. 5. Model architecture of the Active Transfer Learning Framework, including ATL-CNNLSTM-FT and ATL-CNNLSTM-FT with models hyperparameters.
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Table 2

Details of model parameters used during implementation.

Model parameters Value

Convolution Layer Filter Size: 128

Kernel Size: 5
Dropout Layer Dropout Probability: 0.1

LSTM Layer Number of Neurons: 256

Recurrent Dropout Probability: 0.1

Dense Layer Dense Layer 1: 64

Neurons Dense Layer 2: 16

Neurons Activation Function: ReLU

Weight Initializer: Glorot uniform weight initialization

Output Layer Number of Neurons: 2 (thermal acceptability) or 3 
(thermal and air movement preference) depending on 
the classification task

Activation Function: Softmax

Optimization Function Adam Optimizer with learning rate of 0.001

Loss Function Categorical Cross Entropy

Batch Size 128

Epochs Pre-training Step: 100 Epochs

Retraining Step: 30 Epochs with early stopping enabled 
and an evaluation window of 10 epochs

4. Results and discussion

4.1. Model implementation

The models outlined in this study were implemented using the 
Python programming language and the TensorFlow Keras library. Addi-

tionally, the hyperparameters chosen for model implementation are de-

termined by experimenting with different hyperparameters on the mod-

el’s predictive performance and findings from past studies that adopted 
the same model architecture. A summary of the model parameters and 
hyperparameters is described in Table 2.

During the model training process, the transfer learning models are 
pre-trained on 100% of the labeled data from the ASHRAE Global Ther-

mal Comfort Database II. They are subsequently retrained on a limited 
number of labeled data from the BCA Testbed Dataset before being eval-

uated on a holdout set from the BCA dataset. The amount of labeled data 
used during the retraining step varies based on the experiments con-

ducted, which are described in the following subsections. The holdout 
set is obtained by randomly setting aside 10 labeled instances from each 
study participant from the BCA testbed to ensure equal representation of 
each participant when evaluating the models’ predictive performance.

4.2. Evaluation metrics

Two evaluation metrics were chosen for this study: accuracy and 
micro-average F1 score.

Accuracy is a popular classification evaluation metric used in past 
thermal comfort studies and is defined as the ratio of true positive 
instances for each label class against the total number of predicted 
instances across all label classes. The accuracy formula is formally ex-

pressed as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑁

𝑖=1 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑖𝑗

(3)

In this equation, 𝑁 represents the number of label classes,

𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖 is the number of correctly predicted instances for class 
𝑖, and 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖𝑗 is the number of instances predicted as class 𝑗.

In addition, given the significant imbalance between the occupants’ 
reported comfort labels in the BCA Testbed Dataset, as highlighted in 
Section 3.3, the micro-average F1 score was also adopted in this study 
to evaluate the comfort model’s predictive performance across all la-
8

bel classes. As this evaluation metric is sensitive towards how well the 
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model performs across all label classes, particularly for the minority 
class, it provides a more holistic assessment of the model’s overall per-

formance. By comparing this metric with the model’s reported accuracy 
score, we could also determine if the model is biased towards the ma-

jority class based on the difference between both metrics.

The micro-average F1 score is calculated based on the harmonic 
mean of the precision 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 and recall 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 scores for each la-

bel class 𝑖 as shown in the following equations.

Precision𝑖 =
∑𝑁

𝑖=1 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖∑𝑁

𝑖=1 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖 +
∑

𝑗≠𝑖 𝐹 𝑎𝑙𝑠𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑗

(4)

Recall𝑖 =
∑𝑁

𝑖=1 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖∑𝑁

𝑖=1 𝑇 𝑟𝑢𝑒𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑖𝑖 +
∑

𝑗≠𝑖 𝐹 𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑖𝑗

(5)

Micro-average F1 =
2 ⋅

∑𝑁

𝑖=1 Precision𝑖 ⋅ Recall𝑖∑𝑁

𝑖=1(Precision𝑖 + Recall𝑖)
(6)

4.3. Impact of transfer learning approaches for personal comfort models

To evaluate the influence of transfer learning on the model’s pre-

dictive performance, we compared a base CNNLSTM model against 
the TL-CNNLSTM-FT and TL-CNNLSTM-FE models in predicting the oc-

cupants’ thermal preference, thermal acceptability, and air movement 
preferences, as depicted in Table 3. The primary distinction between the 
base CNNLSTM model and the TL-CNNLSTM-FT and TL-CNNLSTM-FE 
models lies in their training data, where the base model is trained solely 
on the BCA Testbed Dataset (target domain), while the latter models 
undergo pre-training on the ASHRAE database (source domain) before 
retraining on the BCA dataset.

Based on the empirical results presented in Table 3, both transfer 
learning models (TL-CNNLSTM-FT and TL-CNNLSTM-FE) consistently 
outperformed the base CNNLSTM model in terms of accuracy and 
micro-average F1 score. Specifically, the transfer learning models out-

performed the base CNNLSTM model by 1.3%-3.4% in terms of accuracy 
and 2%-3.5% for micro-average F1 score when predicting the occupants’ 
thermal preference, thermal acceptability, and air movement prefer-

ence. These results clearly underscore the value of transfer learning, 
where the model was able to leverage insights from the information-

rich ASHRAE database during the pre-training step and adapt to the 
information-poor BCA dataset during the retraining step, ultimately 
enhancing its predictive performance in the target domain. The im-

plication of this finding is that practitioners can effectively use transfer 
learning to improve the performance of existing models trained under 
information-poor conditions without collecting additional data in the 
target building. Additionally, when comparing the model’s predictive 
performance when using different transfer learning approaches, both 
TL-CNNLSTM-FE and TL-CNNLSTM-FT exhibited similar performances, 
with the TL-CNNLSTM-FT model performing marginally better in terms 
of model accuracy, while the TL-CNNLSTM-FE model performed con-

sistently better when considering micro-average F1 score. Lastly, given 
that the reported accuracy and micro-average f1 scores reported in Ta-

ble 3 are comparable for different comfort tasks and conditions, this 
result provides strong evidence that the models are also not biased to-

wards the majority class.

4.4. Impact of active learning on transfer learning models’ performance

This section investigates the impact of incorporating active learning 
into the transfer learning framework through two experiments:

Experiment 1 (Random selection, 9.8% of data): The first experi-

ment involves randomly selecting two instances per partic-

ipant from the target domain, which constitutes 9.8% of the 
total training data. Specifically, one instance was collected 

under AC (air-conditioning) and the other under NV (natural 
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Table 3

Model performance comparison of different Transfer learning models against the Base model (CNNLSTM) 
for thermal preference, thermal acceptability, and air movement preference. The reported accuracy and 
micro-average f1 scores are averaged across all respondents in the target domain.

Comfort Task Model Source Target % of Training 
Data from Target

Accuracy Micro-average 
F1 Score

Thermal 
Acceptability

CNNLSTM (Base) N.A. BCA 100% 0.828 0.800

TL-CNNLSTM-FE ASHRAE 0.832 0.818

TL-CNNLSTM-FT ASHRAE 0.839 0.813

Thermal 
Preference

CNNLSTM (Base) N.A. BCA 100% 0.675 0.636

TL-CNNLSTM-FE ASHRAE 0.698 0.658

TL-CNNLSTM-FT ASHRAE 0.693 0.654

Air Movement 
Preference

CNNLSTM (Base) N.A. BCA 100% 0.619 0.602

TL-CNNLSTM-FE ASHRAE 0.630 0.614

TL-CNNLSTM-FT ASHRAE 0.633 0.593

Table 4

Model performance comparison with and without active learning for thermal preference, thermal acceptability, and air movement 
preference. The reported accuracy and micro-average f1 scores are averaged across all respondents in the target domain.

Comfort Task Approach (Random 
vs Active Learning)

Model Source Target % of Training 
Data from Target

Accuracy Micro-average 
F1 Score

Thermal 
Acceptability

Random CNNLSTM (Base Model) N.A. BCA 9.8% 0.782 0.790

TL-CNNLSTM-FE ASHRAE 9.8% 0.809 0.806

TL-CNNLSTM-FT ASHRAE 9.8% 0.809 0.777

Active Learning ACNNLSTM (Base Model) N.A. BCA 9.8% 0.789 0.759

ATL-CNNLSTM-FE ASHRAE 9.8% 0.837 0.814

ATL-CNNLSTM-FT ASHRAE 9.8% 0.823 0.804

Thermal 
Preference

Random CNNLSTM (Base Model) N.A. BCA 9.8% 0.587 0.568

TL-CNNLSTM-FE ASHRAE 9.8% 0.630 0.604

TL-CNNLSTM-FT ASHRAE 9.8% 0.619 0.594

Active Learning ACNNLSTM (Base Model) N.A. BCA 9.8% 0.632 0.597

ATL-CNNLSTM-FE ASHRAE 9.8% 0.654 0.633

ATL-CNNLSTM-FT ASHRAE 9.8% 0.668 0.636

Air Movement 
Preference

Random CNNLSTM (Base Model) N.A. BCA 9.8% 0.530 0.496

TL-CNNLSTM-FE ASHRAE 9.8% 0.582 0.563

TL-CNNLSTM-FT ASHRAE 9.8% 0.579 0.550

Active Learning ACNNLSTM (Base Model) N.A. BCA 9.8% 0.523 0.435

ATL-CNNLSTM-FE ASHRAE 9.8% 0.616 0.574

AS
ATL-CNNLSTM-FT

ventilation). The two instances were then utilized as training 
data for the retraining step.

Experiment 2 (Active learning, 9.8% of data): The second experi-

ment involves using active learning (QBC sampling algorithm) 
to select the two most informative instances, also constitut-

ing 9.8% of the total training data. Similarly, one instance was 
collected under AC (air-conditioning) and the other under NV 
(natural ventilation). The two instances were then utilized as 
training data for the retraining step.

By pretraining the CNNLSTM model on the ASHRAE database and 
retraining it on the selected instances from the target domain, the 
results for both experiments are presented in Table 4. According to 
the empirical results presented in Table 4, the active transfer learning 
models (ATL-CNNLSTM-FT and ATL-CNNLSTM-FE) consistently outper-

formed their transfer-learning-only counterparts (TL-CNNLSTM-FT and 
TL-CNNLSTM-FE) both in terms of model accuracy and micro-average 
F1 score. More specifically, the active transfer learning models were able 
to outperform the transfer-learning-only models by 1.7%-7.9% in terms 
of accuracy and 1.0%-7.1% for micro-average F1 score when predicting 
the occupants’ thermal preference, thermal acceptability, and air move-

ment preference. Notably, the improvement in predictive performance 
after incorporating active learning is consistently observed not only in 
both transfer learning models (TL-CNNLSTM-FE and TL-CNNLSTM-FT) 
but also from the base CNNLSTM models without transfer learning, 
thereby demonstrating its generalizability to different model architec-
9

tures. These findings provide sufficient evidence of the effectiveness of 
HRAE 9.8% 0.614 0.571

active learning in improving the predictive performance of the trans-

fer learning models by optimizing the retraining process and selecting 
the most informative instances in the information-poor target domain 
for model retraining. In fact, the results show that by combining active 
learning with transfer learning, we were able to obtain a model per-

formance comparable to another model trained on more than 10 times 
the existing training data, significantly improving the model’s data ef-

ficiency. Lastly, given that the reported accuracy and micro-average f1 
scores reported in Table 4 are comparable for different comfort tasks 
and conditions, this result provides strong evidence that the models are 
not biased towards the majority class.

4.5. Impact of different amounts of training data in target domain on 
predictive performance

After evaluating the impact of transfer learning and active learning 
on the model’s predictive performance, this subsection aims to evaluate 
how the model performs with different amounts of training data in the 
target domain for the model retraining step. By evaluating the models’ 
performance when using varying amounts of training data from the tar-

get domain (i.e., 0%, 9.8% ≈ 2 instances/data-points per participant -
representing one instance for each AC and NV mode, 36% ≈ 8 instances 
per participant - representing one instance per condition out of 8 given 
in Table 1, and 100%), the results are generated and visualized in Fig. 6.

One of the observations from Fig. 6 indicates that the predictive per-

formances of all models generally follow a positive trend as the models 

are retrained on an increasing amount of training data from the target 
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Fig. 6. Model performances of the base, transfer learning, and active trans-

fer learning models after retraining on different amounts of data in the target 
domain for all comfort tasks. The reported accuracy scores on the Y-axis are av-

eraged results across all respondents in the target domain.

domain. However, this trend does not follow a linear pattern but instead 
gradually converges, signifying diminishing returns in model improve-

ment as more data from the target domain is available for retraining. 
This observation is likely due to the model having already captured the 
existing patterns within the dataset such that there are no additional 
patterns to learn from the new incoming data. This is especially true 
when it comes to modeling personal comfort as there is a physiologi-

cal limit to the human body’s ability to adapt to external environmental 
conditions. As such, the application of active learning is particularly ef-

fective in these cases as it helps to identify the most informative data 
points for learning these patterns. An implication of this result is that 
researchers conducting data collection studies to gather occupants’ ther-

mal comfort preferences should carefully balance their data collection 
budget with the marginal improvements from their models. This ensures 
optimal utilization of their limited budget to achieve greater gains in 
10

model performance.
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Another notable observation arises from comparing the predic-

tive performance of the base CNNLSTM model with that of the TL-

CNNLSTM-FT and TL-CNNLSTM-FE models. It can be observed that the 
most significant improvement from the application of transfer learning 
occurs when very limited training data from the target domain is avail-

able for model retraining. This improvement gap gradually declines as 
more training data from the target domain becomes available. This re-

sult aligns with our intuition as the transfer-learned models were able 
to effectively bridge their knowledge gap in the information-poor target 
domain based on the knowledge gained in the source domain.

Finally, based on the performance boost resulting from the integra-

tion of active learning within the transfer learning framework, we can 
observe that ATL-based models with less than 10% of the training data 
were able to make predictions almost as accurately as the base CNNL-

STM model trained with 100% of the data. In fact, in the case of thermal 
acceptability, ATL models with less than 10% of training data were ob-

served in Fig. 6 to outperform traditional CNNLSTM models with 100% 
training data. Lastly, in terms of the ATL-based model’s performance 
across different participants, the reported accuracy scores for all 58 re-

spondents have a standard deviation of less than 0.16 across different 
comfort tasks, thereby demonstrating the personalized nature of the re-

sulting model. This concludes that our proposed active transfer learning 
strategy was effective in improving the data efficiency of personal com-

fort models while maintaining adequate predictive performance.

5. Conclusion

We introduced a novel active transfer learning framework that inte-

grates active learning and transfer learning to enhance the performance 
of personal comfort models in scenarios with limited data. The pro-

posed framework was evaluated across three comfort tasks — thermal 
preference, thermal acceptability, and air movement preference — by 
leveraging knowledge from the extensive ASHRAE Global Thermal Com-

fort Database II and applying it to a smaller comfort dataset collected 
from the BCA testbed in Singapore.

Through a comprehensive evaluation of the comfort models de-

veloped using the proposed active transfer learning framework, the 
empirical results obtained led to multiple findings:

Firstly, the transfer-learning-enhanced models, namely TL-CNN-

LSTM-FT and TL-CNNLSTM-FE, were able to consistently outperform the 
base CNNLSTM model in terms of accuracy and micro-average F1 score. 
Specifically, these models exhibited improvements ranging from 1.3%-

3.4% in accuracy and 2%-3.5% in micro-average F1 score when predict-

ing the occupants’ thermal preference, thermal acceptability, and air 
movement preference. Furthermore, when evaluating the models’ per-

formance using increasing amounts of training data, the most substantial 
improvement through transfer learning occurred when very limited 
training data from the target domain was available for model retraining, 
with diminishing returns observed as more data became accessible.

Secondly, the active transfer learning models, ATL-CNNLSTM-FT 
and ATL-CNNLSTM-FE, were able to further outperform their transfer-

learning-only counterparts (TL-CNNLSTM-FT and TL-CNNLSTM-FE), 
achieving a boost of 1.7%-7.9% in accuracy and 1.0%-7.1% in micro-

average F1 score. This result clearly demonstrated the effectiveness of 
combining active learning with transfer learning approaches in improv-

ing the occupants’ personal comfort predictions.

Lastly, an intriguing finding emerged from comparing ATL-based 
models (ATL-CNNLSTM-FT and ATL-CNNLSTM-FE) and the base CNNL-

STM model. The proposed active transfer learning models were able 
to make predictions almost as accurate as the base CNNLSTM model, 
using only less than 10% of the training data compared to the base 
CNNLSTM model trained with 100% of the data for all comfort tasks. 
This concludes that active transfer learning was an effective strategy for 
developing data-efficient personal comfort models using limited data 

while achieving sufficient predictive performance.
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While our active transfer learning framework proves to be a valu-

able strategy for enhancing personal comfort models under limited data 
availability, it is also important to highlight some of the limitations of 
this study that will be addressed in future works. Firstly, given that the 
proposed active transfer learning framework is evaluated on a single 
target building in the tropics, there is a need to apply the framework 
across different target buildings from a range of climate zones to ensure 
the generalizability of the study’s findings. Additionally, given that the 
adoption of active learning would inevitably increase the computation 
cost during the model training process, there is a need for practition-

ers to weigh the costs associated with data collection and the additional 
computation costs when deciding if the active transfer learning frame-

work is appropriate for their use case. Lastly, other potential avenues for 
future research can also include devising more intelligent approaches 
for selecting relevant training data from the ASHRAE Global Database 
(i.e., source domain) during the initial training phase of transfer learn-

ing to further enhance the predictive performance of the resulting model 
when applied to the target domain.

To sum up, our active transfer learning framework proves to be a 
valuable strategy for enhancing personal comfort models, offering su-

perior predictive performance even in scenarios with limited data avail-

ability. This study opens avenues for future research in data-efficient 
comfort modeling for practical applications.
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