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H I G H L I G H T S

• A real-time plug load identification approach was proposed using low-frequency data.

• The robustness of the approach was evaluated under different experimental settings.

• The best online model reported accuracies up to 93% with response time of 5 min.

• Energy dashboards and control systems were highlighted as future application areas.

• The plug load dataset collected in this study was made publicly available online.
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A B S T R A C T

Plug loads account for up to one-third of the overall energy use in commercial buildings. There is thus a growing
research interest in utilising load monitoring systems to track plug load usage by installing smart plugs to
capture high-resolution consumption data. The availability of such data has also enabled the development of
automatic plug load identification models that enhance the capabilities of existing load monitoring systems.
Through our literature review, we highlighted several limitations that impede real-world implementation, such
as the limited number of publicly available datasets for commercial buildings, models trained on data with high
sampling frequencies while using an extended time window, and data leakage issues during model training. In
this study, we proposed a near-real-time plug load identification approach that uses low-frequency power data
(1/60 Hz) to identify plug loads in office spaces. The dataset used in this study is processed by first identifying
the active periods of the plug loads before applying a novel dynamic time window strategy during feature
extraction. These extracted features are subsequently passed through several classification algorithms and
evaluated using different accuracy metrics. The proposed approach is also assessed through multiple experi-
ments, including (1) identifying the best online and offline models, (2) comparing between different time
window strategies, and (3) evaluating model performances under different sampling frequencies. As a result, the
best online model achieved accuracies up to 93% using the Bagging algorithm with a minimum dynamic time
window of 5 minutes. Finally, we highlighted two application areas of automatic plug load identification in
energy dashboards and personalised control systems as part of future works.

1. Introduction

The energy contribution of plug loads has been steadily rising over
recent years, accounting for up to 33% of the overall energy use in
commercial buildings [1]. This trend is particularly true in high-

efficiency buildings where the development of energy-efficient designs
for HVAC and lighting systems has resulted in a gradual decline in their
energy contributions, driven by code mandates and industry standards.
On the other hand, the development of energy-efficient plug loads re-
mains relatively unregulated, leading to an overall increase in their
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relative energy contributions when compared to other energy systems.
Based on these energy trends, a recent projection published by the U.S.
Energy Information Administration predicts an average 2.6% increase
in energy use per year for office equipment between 2019 and 2050 [2].
Due to the lack of a standardised definition in the literature, we define
plug loads as electrical devices that draw power from a building’s
electrical sockets, excluding conventional heating, cooling, and lighting
loads in the building.

1.1. Load monitoring approaches and applications

Given the rise in plug load energy contribution in commercial
buildings, there is a growing research and commercial interest in uti-
lising load monitoring systems to efficiently track and manage plug load
energy use through various applications. The two main approaches
used in existing load monitoring systems can be categorised under non-
intrusive load monitoring (NILM) and intrusive load monitoring (ILM)
[3].

NILM involves installing a power meter at the building’s main
electrical panels to obtain the aggregated power consumption data at
the floor or building level. This aggregated data is subsequently passed
through a load disaggregation algorithm to identify the operational
states of individual plug loads in the building based on their unique
power consumption patterns [4]. NILM has been a popular and low-cost
option among researchers as it does not intrude upon the occupants
during data collection and only requires the installation of a single
power meter for the entire floor or building [5]. However, the perfor-
mance of load disaggregation algorithms is significantly affected by the
number of plug loads that are operating simultaneously due to the in-
creased combination of consumption patterns to be identified, as well as
signal distortion due to overlapping use [6]. Moreover, it was high-
lighted by Antonio et al. [7] that the NILM approach tends to perform
poorly in detecting plug loads that do not consume a significant amount
of power. In the context of office buildings where a large number of
similar plug loads can be found operating simultaneously (i.e., laptops
and monitors), the lack of a differentiable power consumption pattern
between these plug loads poses significant challenges when attempting
to perform load disaggregation.

With the recent advancements in sensing and communication
technologies, the reduced cost of sensors and improved device in-
tegration with smart home systems have led to the rising popularity of
the ILM approach [8]. ILM involves installing smart power plugs di-
rectly at each electrical socket, which allows high-resolution and ac-
curate energy consumption information of individual plug loads to be
collected, due to the elimination of the load disaggregation step. The
availability of this data has also opened the doors for exciting appli-
cations [3] such as:

• Activity Recognition: Inferring the occupants’ activity patterns
based on the usage of specific plug loads.

• Occupancy Detection: Inferring the occupants’ presence based on
the operation of specific plug loads located in different parts of the
building [6].

• User-Appliance Interaction: Analysing the occupants’ interaction
with different plug loads such as their usage frequency, duration of
use, and switch-off behaviours [9].

• Automatic Plug Load Identification: Automatically identifying the
plug load’s operational state (ON/OFF) and type (desktop, monitor,
laptop) based on its power consumption patterns.

1.2. Automatic plug load identification

Among the above applications listed, automatic plug load identifi-
cation has useful implications on effectively managing plug loads to
promote energy savings in buildings. A detailed breakdown of the en-
ergy contributions of each plug load on an energy dashboard provides

occupants with real-time feedback on their energy consumption levels
to encourage them to reduce their energy footprint [8,10,11]. This
approach is commonly known as eco-feedback. Furthermore, the
availability of this information would facilitate the design of con-
servation initiatives that can be targeted towards reducing energy wa-
stage from high-energy loads. The fine granularity of the consumption
data at the temporal level also allows building managers to deploy load
scheduling strategies for optimal energy utilisation within the building
[12], as well as perform load profiling and benchmarking between
different buildings [13,14].

Many studies have proposed various automatic plug load identifi-
cation approaches based on the data collected using an ILM approach.
Some of the features used during plug load identification include in-
stantaneous voltage, root-mean-square voltage (VRMS), root-mean-
square current (IRMS), active power (P), reactive power (Q), apparent
power (S), frequency, peak voltage (Vpeak), peak current (Ipeak), as well
as the current, voltage, and power harmonics. However, our review of
past plug load identification studies conducted in commercial buildings
(refer to Section 2) reveal several limitations that impede the practical
implementation of these models in real-world settings. The first lim-
itation is related to the fact that most publicly available datasets were
collected in the context of residential buildings, which narrows down
the number of public datasets that can be used for model development
in commercial buildings. Furthermore, most of the plug load identifi-
cation models proposed in past studies were trained on datasets that
were collected using sensors with relatively high sampling frequencies
(e.g., 1/2 Hz). During a building-wide implementation, the use of such
high-frequency sensors will result in a substantial cost due to data
storage. Some models also reportedly use an extended time window
(e.g., 1 hour) when performing plug load identification, which is con-
sidered too long and impractical for online systems that often require
the identification process to occur in real-time or near-real-time set-
tings. Moreover, this limitation results in inaccurate identifications for
plug loads that are only connected for a short period. The term “time
window” refers to the duration of time where historical consumption
data is collected and processed to perform plug load identification.
Therefore, data must be collected for the duration of the time window
before the first identification is made when the plug load is initially
connected to the smart plug. Finally, due to the time-series nature of the
plug load dataset, some studies have also adopted unsuitable ap-
proaches when dividing the dataset during model development and
evaluation, leading to data leakage and the reporting of overly opti-
mistic model performance.

1.3. Objective and contributions of the study

The objective of this study is to perform automatic identification of
different plug loads typically found in office spaces, based on their
power consumption patterns under low sampling frequencies and
within a short time interval.

The main contributions of this paper are as follows:

• A near-real-time plug load identification approach was proposed
with an accuracy of up to 93% and was capable of making its first
identification within 5 min while using low-frequency power con-
sumption data (1/60 Hz).

• A comprehensive evaluation was conducted to assess the robustness
of our proposed approach through multiple experiments. These ex-
periments include (1) identifying the best models for online and
offline settings, (2) comparing between dynamic and fixed time
window strategies, and (3) evaluating model performance under
different sampling frequencies.

• The dataset used in this study was collected by retaining the real-
world usage patterns of different plug loads typically found in an
office environment and has been made publicly available to con-
tribute to the existing repository of plug load datasets.

Z.D. Tekler, et al. Applied Energy 275 (2020) 115391

2



2. Literature review

This section provides a critical review of several studies found in the
literature that used smart plugs to obtain high-resolution consumption
data for performing automatic plug load identification. The review also
covers a brief description of the datasets that were used during model
development.

A study conducted by Reddy et al. [15] proposed a plug load
identification model capable of performing three levels of identifica-
tions, including (1) identifying the model of the individual plug load,
(2) identifying different plug load types, and (3) identifying the device
state (ON/OFF). The dataset used in this study contains the power
consumption patterns of 90 plug loads categorised into nine different
plug load types commonly found in educational buildings and has a
sampling frequency of 1/2 Hz. Several classification algorithms were
used to develop the identification model, including K-Nearest Neigh-
bours (K-NN), Support Vector Machine (SVM), Naive Bayes (NB), Lo-
gistic Regression (LR), and Random Forest (RF), where the best per-
forming model reported an accuracy close to 100%. This work was
extended when Reddy et al. [16] proposed another plug load identifi-
cation model that was able to identify the plug load type and state (ON/
OFF) under different operating conditions, such as different voltage
levels and operational states. The dataset used in this study contains the
power consumption patterns of 70 plug loads grouped into seven
classes, including desktop, kettle, laptop, monitor, projector, printer,
and network switch. The data was collected at a sampling frequency of
1/5 Hz (equivalent to 1 sample every 5 seconds) using a custom smart
power strip. Using a hybrid combination of regression analysis and
weighted K-NN, the proposed model outperformed other baseline al-
gorithms by reporting accuracies up to 100% and 79% during random
cross-validation and device-wise cross-validation, respectively.

Another related work was conducted by Abeykoon et al. [17], who
proposed a prototype data acquisition platform that collected the power
consumption information of individual plug loads found in a residential
apartment and performed real-time plug load identification based on
their power consumption patterns. In the end, the Silhouette and K-
means algorithms reported accuracies up to 98%, outperforming other
supervised and unsupervised classification algorithms considered.

Ridi et al. [18] also conducted several plug load identification stu-
dies using the Appliance Consumption Signature-Fribourg 2 (ACS-F2)
database. The ACS-F2 database contains the power signatures of 225
plug loads from 15 different categories and is an extension of the ACS-
F1 database, which was released one year earlier in 2013 [19]. The
power consumption information of each plug load is recorded at a
sampling frequency of 1/10 Hz (equivalent to 1 sample every 10 s)
using smart power plugs for one hour per session, over two separate
sessions. By using classification algorithms such as K-NN, Gaussian
Mixture Models (GMM), and Hidden Markov Models (HMM), the au-
thor was able to report classification accuracies of up to 94% [18,20]. A
time window of one hour was also used during the feature extraction
step to capture the dynamic characteristics of the plug load.

Finally, one of the most recent plug load identification studies was
conducted by Tundis et al. [21], who proposed the use of a set of 19
input features, including the power consumption data, temporal usage,
and location information to perform plug load identification. The model
was trained on 33 different plug load types and was evaluated between
different classification algorithms including RF, Bagging, LogitBoost
(LB), Decision Tree (DT), NB, and SVM before concluding that the RF
algorithm was able to report the highest classification accuracy of
96.51%.

Despite the excellent model performances reported by these studies,
several limitations impede the implementation of these proposed
models into real-world settings.

The first limitation is the fact that many of the proposed models are
trained on datasets that are collected using sensors with relatively high
sampling frequencies of up to 1/2 Hz (equivalent to 1 sample every 2

seconds). While this sampling frequency is useful in capturing the
minute transition behaviours of the plug load leading to better identi-
fication performance, the large amount of data that has to be stored as a
result of the high sampling frequency translates to high storage costs, in
the case of a building-wide implementation. Therefore, load monitoring
systems tend to be set at a lower sampling frequency to reduce the cost
of data storage, and the performance of the identification model should
also be robust under such low sampling conditions.

The second limitation is the use of an extended time window (e.g.,
1 hour) when extracting input features that require historical data (i.e.,
maximum power, average power, minimum power) [18,20]. In the case
of a real-time system, the use of an extended time window will result in
significant delays before the model can identify the plug load and also
leads to inaccurate identification if the plug load is only connected for a
short period.

The last limitation is related to the issue of data leakage. In the field
of machine learning, data leakage occurs when data from the test set is
unknowingly revealed to the model during the training phase. Since the
model is subsequently evaluated on previously encountered data, this
will cause the model to report overly optimistic test results that are not
reflective of the model’s actual performance and prevent a fair com-
parison between different plug load identification approaches [15–17].
In this case, where time-series data is considered, the input features are
calculated based on historical plug load consumption data that was
recorded in the previous timesteps, thereby creating input features that
are highly correlated and, in some instances, are identical within the
same period. By performing a random split to obtain the training and
test datasets, these highly correlated sets of input features will be ran-
domly assigned between both datasets, leading to data leakage.

3. Methodology

This section provides a detailed description of the proposed plug
load identification approach, starting with a data collection exercise to
obtain the power consumption data of several plug loads typically
found in an office space, to the data pre-processing steps taken for
feature extraction and model development. Several performance me-
trics are also proposed to evaluate the resulting model performance.

3.1. Data collection

The first part of our proposed approach begins with a data collection
exercise in a typical office environment to obtain the power consump-
tion signatures of several plug loads commonly found on the occupants’
desks. The power consumption data was captured in a naturalistic
setting and comprised of different plug loads, including laptops, desk-
tops, monitors, fans, and task lamps. A total of 36 occupants partici-
pated in this study consisting of a mixture of researchers and admin-
istrative staff. Within the study area, every two connecting desks are
equipped with fifteen electrical sockets, where each electrical socket is
connected to a ZigBee-based smart power plug from Plugwise [22] to
monitor the power consumption of any connected plug load (refer to
Fig. 1). Each smart plug is also equipped with a ZigBee module that
transmits data to a nearby gateway device within the same ZigBee
network and contains a relay that allows the plug load to be switched
ON/OFF remotely. The gateway device is a Raspberry Pi, equipped with
a Plugwise Zigbee dongle that allows it to query each smart power plug
within the network for the plug load’s instantaneous power at a sam-
pling frequency of 1/60 Hz (equivalent to 1 sample per minute). The
data received is then transmitted to a central server through TCP/IP via
Ethernet connection [23]. The central server is implemented based on
the OSIsoft PI database [24], which stores the power consumption data
and allows users to remotely extract the data for subsequent processing
using various RESTful API services [25]. Fig. 2 provides a graphical
representation of the ZigBee network and the OSIsoft PI database.

Based on the setup described above, three weeks of data collection
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effort was conducted in the study area between February 2020 and
March 2020. In total, 99 smart power plugs were deployed to collect the
power consumption data of 9 desktops, 31 laptops, 35 monitors, 13
fans, and 11 task lamps at a sampling frequency of 1/60 Hz (equivalent
to 1 sample every minute). The number of devices considered in this
study is representative of a medium-sized office space where the data
collection exercise is conducted. Based on the number of devices col-
lected for each plug load type, our dataset was found to be comparable
and in some instances (e.g., laptops and monitors) more comprehensive
when compared to other datasets used in past studies [15,18], albeit
considering only five different plug load types. Furthermore, to ensure
that our dataset is scalable to other study areas, a particular emphasis is
placed on ensuring that the dataset comprises of devices from different
manufacturers and models to capture a wide range of power signatures
for the same plug load type.

A close inspection of the dataset shows that the power consumption
patterns of different plug loads tend to fluctuate throughout the day,
even during business hours, where occupants are expected to be present
in the office. Fig. 3 shows the power consumption patterns of a laptop
and a task lamp during an average workday between 8 AM and 6 PM. It

can be observed from Fig. 3 that each device was used intermittently
throughout the day as it alternates between the active state, where the
device consumes a significant amount of power, and the inactive state,
where it has a power consumption close to 0 W. The usage patterns of
each device could be influenced by different factors, including the oc-
cupants’ presence at their desk areas, the flexibility of their work
schedules, as well as thermal and lighting conditions. It can also be
observed from Fig. 3 that each device was demonstrating sharp power
fluctuations when it is both in use and when it is not in use, with the
power fluctuations occurring in the latter case caused by standby
power. These fluctuations can lead to significant energy wastage if it
continues for a prolonged period. Each entry in the dataset also con-
tains four fields, including the timestamp information, the in-
stantaneous power value of the connected plug load recorded up to two
decimal places, a unique ID indicating the smart power plug that re-
corded the information, and the label of the corresponding plug load
type manually provided post-data collection. This dataset is made
publicly available online [26] to contribute to the existing repository of
plug load datasets.

3.2. Data pre-processing

Based on the power consumption data that was collected during the
data collection period, a data pre-processing step was performed to
prepare the data for model development. This step includes identifying
the active periods of the individual plug load and performing feature
extraction during the active periods.

3.2.1. Active period identification
As a plug load is used intermittently throughout the day, it alter-

nates between the active state and the inactive state. Since the power
consumption patterns are very similar when the plug loads are in the
inactive state, identification of the plug load type is only performed
when the plug load is in the active state for a prolonged period. This
event is also defined as an active period.

By adopting a similar approach taken by [27], the active period is
identified by first differentiating when the plug load is in the active
state and the inactive state. This differentiation is achieved by setting a
power threshold of 2.5 W as it was observed from the power con-
sumption data collected that several plug loads occasionally consume a
small amount of standby power when they are not in use (~2.3 W).
Based on this power threshold, the active period is identified when the
plug load remains in the active state for a prolonged period. Further-
more, as some plug loads frequently fluctuate between the active state
and the inactive state while they are in use, a threshold duration of
10 minutes (equivalent to 10 samples) is set such that the plug load
must be in the inactive state for this minimum duration of time

Fig. 1. Layout of the study area. Every two connecting desks are equipped with fifteen electrical sockets, with each electrical socket connected to a Zigbee-based
smart power plug to monitor the power consumption of any connected plug load.

Fig. 2. System architecture of the Zigbee network connected to the PI database.
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consecutively before the active period is considered to have ended. The
last 10 minutes when the plug load is in the inactive state is also ex-
cluded from the active period. Otherwise, they are considered as
random power fluctuations within a single active period. Fig. 4 provides
a step-by-step graphical representation of the process described in this
subsection. While other studies have proposed the use of a changepoint
detection algorithm [28] to determine the active periods, we found this
heuristic to be computationally efficient and produced a similar result.

3.2.2. Feature extraction
Based on the active periods identified, feature extraction is per-

formed on the power consumption data recorded within each active
period based on a dynamic time window strategy with a minimum
length of Tmin minutes. In other words, feature extraction will be first
performed at the Tminth minute mark based on the power consumption
data that has been recorded so far, and the length of the time window
used during feature extraction continues to increase at an incremental
step of 1 minute as the active period continues to extend. This approach
of using a dynamic time window not only allows us to utilise the
maximum amount of historical data available when making each
identification, but it also allows the model to make near-real-time
identifications with reasonable accuracy if Tmin is chosen to be a small
value. Furthermore, if the minimum time window was set at Tmin min-
utes, it should be noted that active periods with a duration shorter than
Tmin minutes will be dropped. Fig. 5 demonstrates the dynamic time
window strategy adopted in this study during feature extraction.

By referencing some of the useful features proposed in past studies
[21,27], we extracted the following list of input features based on the
historical power consumption data recorded during time window T.

Power pt : This feature captures the plug load’s instantaneous
power consumption at time t where t refers to the latest time stamp in
time window T.

Maximum power pmax: This feature calculates the plug load’s
maximum power consumption during time window T.

= ∈p max p where i T{ },max i (1)

Minimum power pmin: This feature calculates the plug load’s
minimum power consumption during time window T.

= ∈p min p where i T{ },min i (2)

Average power pave: This feature calculates the plug load’s average
power consumption during time window T.

=
∑ ∈p

p
T| |ave

i T i

(3)

Power variance pvar: This feature calculates the variation in the
plug load’s power consumption during time window T.

=
∑ −

∈p
p p
T

( )
| |var

i T i ave
2

(4)

Average active power paveactive: This feature calculates the plug
load’s average power consumption during time window T when the
plug load is in the active state.

=
∑

∑

∈ >

∈ >

p
p

1aveactive
i T p W i

i T p W

, 2.5

, 2.5

i

i (5)

Average peak power pavepeak: Given that the time window is made
up of a series of disjointed subintervals, sj, where j ∈ S, separated by
power values that fall below the power threshold (2.5 W), this feature
calculates the average of the peak power values, from each of these

Fig. 3. Power consumption and usage patterns of a laptop (left) and a task lamp (right) during an average workday between 8 AM and 6 PM.

Fig. 4. Step-by-step representation of the active period identification process. The process begins with identifying the active states of the plug load by setting a power
threshold value of 2.5 W before identifying the periods where the plug load remains in the active state for an extended duration of time.

Fig. 5. Feature extraction based on the proposed dynamic time window
strategy. The minimum length of the dynamic time window Tmin is set at
5 minutes in this example, which increases at 1-minute increments.
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subintervals.

=
∑ ∈

∑

∈

∈

p
max p where k s{ },

1avepeak
j S k j

j S (6)

Power delta dt: This feature captures the absolute power differ-
ence, from the previous power value, −pt 1, at time t.

= − −d p p| |t t t 1 (7)

Duty cycle: This feature represents the fraction of time where the
plug load is in the active state, given time window T. This information is
useful in distinguishing between plug loads that consistently consume a
stable amount of power when in use and plug loads that report fluc-
tuating power values during operation.

Histogram features: As some plug loads may exhibit specific pat-
terns of power consumption that cannot be easily captured using ag-
gregated statistical metrics, we attempt to capture any remaining pat-
terns by allocating the reported power delta values (within time
window T) into eight overlapping bins of a histogram. Each bin is ad-
justed to have a width spanning from X to 5X, where X represents the
smallest power delta value that should be placed in that bin. Therefore,
the eight bin widths that have been chosen for this study are 1–5 W,
2–10 W, 5–25 W, 8–40 W, 10–50 W, 12–60 W, 15–75 W, and
20–100 W. By calculating the corresponding bin sizes and average time
interval between the energy delta values in each bin, we obtained a
total of 16 input features. In the end, a combination of all of the above
input features resulted in a vector containing 25 dimensions.

3.3. Model development

After the feature extraction step, the processed data is split into a
training set and a test set for model training and evaluation, based on a
70/30 ratio, respectively. Due to the time-series nature of the dataset,
the processed data is first grouped based on their original devices before
randomly splitting each data group either into the training set or the
test set. In other words, if the dataset contains a total of ten monitors,
seven of the monitors will be randomly assigned to train the model, and
the remaining three monitors are used to evaluate the model perfor-
mance. This simple approach limits the occurrence of data leakage as
the highly correlated input features from the same device will always be
found in the same dataset (i.e., training or test) while maintaining a low
correlation between different datasets since they are based on data
obtained from different devices. After defining the training and test
datasets, several classifiers were developed using a variety of su-
pervised classification algorithms such as K-NN [29], Gradient Boosting
(GB), RF, and Bagging [30] due to their reported performance in past
studies.

In a classification problem, K-NN works simply by assigning a class
to a data point based on the most common class found among its k
nearest neighbours. Therefore, the algorithm assumes that data points
from the same class tend to lie in close proximity to each other in
geometric space. GB is an iterative functional gradient descent algo-
rithm that minimises its loss function by iteratively introducing a weak
learner (i.e., a decision tree) in a forward stage-wise fashion to improve
the performance of the current model [31]. Due to its robust perfor-
mance, it is also a popular algorithm used in many other application
areas [32]. RF is an ensemble algorithm that aggregates the predictions
made by a large number of relatively uncorrelated decision trees to
produce a more accurate model than any individual tree. The correla-
tion between each tree is reduced by training each classifier on different
subsets of the dataset with replacement and randomising the set of
features considered when splitting each node of the decision tree [33].
Finally, Bagging, or Bootstrap Aggregation, is an ensemble algorithm
similar to RF that aggregates the predictions made by a large number of
relatively uncorrelated decision trees to produce a more accurate model
than any individual tree [34]. However, unlike RF, Bagging reduces the

correlation between each tree by using different subsets of the dataset
with replacement during model training.

The parameters of each classifier were optimised by performing
hyperparameter tuning using a 3-fold cross-validation approach where
the training set is randomly split into three equal-sized portions using
the stratified (or device-wise) sampling approach to obtain the training
and validation datasets to avoid data leakage. While it is more common
to adopt a 5-fold or 10-fold cross-validation approach, the desktops in
the training dataset might be under-represented in each fold due to its
small numbers (i.e., 6), leading to models with high variance.

3.4. Model evaluation

The performance of the plug load identification model is evaluated
based on four performance metrics, including overall accuracy, ba-
lanced accuracy, weighted accuracy, and majority-voted accuracy.

Overall accuracy, accuracyoverall, is a standard performance metric
used by many studies to evaluate the performance of their machine
learning models. The metric is calculated by counting the number of
correct classifications made, classificationscorrect , over the total number of
classifications made, classificationstotal, as shown in Eq. (8).

=accuracy
classifications
classificationsoverall

correct

total (8)

Due to the infrequent use of plug loads such as fans and task lamps, the
amount of data collected for these plug load types are comparatively
lesser when compared to other commonly used plug loads such as
laptops and monitors. Therefore, balanced accuracy, accuracybalanced,
was proposed as a second performance metric to evaluate the model
performance by assigning equal weights to each plug load type re-
gardless of its frequency in the test set. Balanced accuracy is calculated
by first applying the overall accuracy equation (refer to Eq. (8)) to each
plug load type l, where l ∈ L, and finding the average of these accuracy
scores among all classes, as shown in Eq. (9).

=
∑ ∈

accuracy
L| |balanced

l L
classifications
classifications

correct l

total l

,

,

(9)

The weighted accuracy, accuracyweighted, was proposed as a third
performance metric, which places different weights on each classifica-
tion that was made during the active period am, where m ∈ M . More
specifically, a heavier weight was placed on classifications that were
made towards the end of the active period while a smaller weight is
placed on classifications made at the beginning. Intuitively, since a
dynamic time window strategy was used during feature extraction, the
input features obtained towards the end of the active period will be
based on more historical data and is hence more likely to capture the
characteristics of the plug load, leading to more accurate identifica-
tions. Exponential smoothing was applied to the probability vector,
P t( )m containing the probability of each plug load type at time t, with

=α 0.1, before summing all of the probability vectors within the active
period am to obtain the final weighted probability vector, Pm. The final
classification was made for the entire active period by identifying the
plug load type with the highest probability in Pm. Since a single class is
assigned to each active period, the final accuracy value is calculated by
counting the number of correctly labelled active periods
classificationscorrect m, , over the total number of active periods, M| |, as
shown in Eq. (11).

= + − − + …+ − + −−P α P t α P t α P α P[ ( ) (1 ) ( 1) (1 ) (1)] (1 ) (0)m m m
t

m
t

m
1

(10)

=accuracy
classifications

M| |weighted
correct m,

(11)

Finally, the majority-voted accuracy, −accuracymajority voted, was pro-
posed as a fourth performance metric, which aggregates the
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classifications that were made during the active period and selects the
most frequently chosen plug load type as the final class. This metric
differs from weighted accuracy as it places equal weight on each clas-
sification that was made regardless of the amount of historical data that
was used to make the classification. Since a single class is assigned to
each active period, the final accuracy value is calculated by counting
the number of correctly labelled active periods over the total number of
active periods, as shown in Eq. (13).

= ∈classification mode classification{ }m t am (12)

=−accuracy
classifications

M| |majority voted
correct m,

(13)

4. Experimental results

In this section, we provided a comprehensive evaluation of the
proposed plug load identification approach through three separate ex-
periments, including (1) identifying the best performing models for
online and offline settings; (2) comparing between dynamic and fixed
time window strategies; and (3) evaluating model performance under
different sampling frequencies. In each of these experiments, multiple
models were developed under the same conditions (i.e., sampling fre-
quency, time window strategy, input features) while varying only one
condition depending on the experiment conducted.

4.1. Experiment 1: Identifying the best models for online and offline settings

In this experiment, different machine learning models were devel-
oped using the proposed plug load identification approach by varying
the minimum length of the dynamic time window and plotting their
corresponding model performance in Fig. 6. In other words, each data
point in Fig. 6 represents the model performance of a unique model
with a minimum dynamic time window of Tmin minutes. K-NN, RF, GB,
and Bagging algorithms were used to develop different models to en-
able a comparison between these classification algorithms and identify
the best performing model for an online and offline setting.

In the case where the model is deployed in an online setting, the
instantaneous power consumption of any connected plug load is used to
perform real-time identification of its plug load type. Since the data
follows a time-series, each identification can only be made based on the
historical data that has been collected up to this point. Furthermore, the
length of the model’s time window relates to the amount of historical
data that will be used to calculate the input features for plug load

identification. Since the model only performs identification during an
active period and uses a dynamic time window strategy, the minimum
length of the dynamic time window corresponds to the response time of
the model when making its first identification during the start of each
active period. In other words, if the model is defined to have a
minimum dynamic time window of 10 minutes, the model is only able
to make its first identification at the 10-minute mark from the start of
the active period. Based on this definition, an ideal online model should
(1) identify the plug load type accurately and (2) within the shortest
time possible during the start of an active period. It can be observed
from Fig. 6 that there is a gradual rise in the model performance for all
four performance metrics as the length of the minimum dynamic time
window increases. Given that both the model performance and
minimum length of the dynamic time window possess a positive cor-
relation, there is a need to strike the right balance between both factors
when identifying the best online model. This balance is achieved by
calculating the accuracy delta values for each minimum dynamic time
window (refer to Fig. 7) and identifying the critical point where any
further increase in window length only results in a minimal gain in
model performance. It can be observed from Fig. 7 that K-NN reaches its
critical point at around the 3-minute mark, RF and Bagging both reach
their respective critical points at around the 5-minute mark, and GB
reaches its critical point beyond the 20-minute mark, thus eliminating it
from consideration due to its long time window. By referring back to
Fig. 6, K-NN is also eliminated from consideration since it consistently
underperforms in all four performance metrics when compared to RF
and Bagging by reporting 0.760, 0.720, 0.749, and 0.773 for overall
accuracy, balanced accuracy, weighted accuracy, and majority-voted
accuracy, respectively. Finally, the Bagging algorithm with a minimum
dynamic time window of 5 minutes is determined to be the best per-
forming model for an online setting by outperforming the RF algorithm
with the same time window, reporting 0.935, 0.890, 0.807, and 0.785
for overall accuracy, balanced accuracy, weighted accuracy, and ma-
jority-voted accuracy, respectively.

On the other hand, in the case where the model is deployed in an
offline setting, all of the power consumption information recorded
during the study period is assumed to be accessible as historical data
and can be used for feature extraction. Since the output of the model is
not time-critical, the minimum length of the dynamic time window is
not crucial, unlike the case of a real-time system. Therefore, the best
performing model for an offline setting is identified solely based on the
four performance metrics. Based on the results reflected in Fig. 6, it can
be observed that the Bagging algorithm with a minimum dynamic time
window of 50 minutes was able to outperform all classification

Fig. 6. Model performance based on different minimum dynamic time windows Tmin. In this experiment, different models are developed under the same conditions
while only varying the minimum length of the dynamic time window Tmin.
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algorithms under other time windows by reporting 0.971, 0.948, 0.895
and 0.876 for overall accuracy, balanced accuracy, weighted accuracy,
and majority-voted accuracy, respectively.

Since the plug load identification model is initially trained on a
group of devices and subsequently tested on a completely different set
of devices that it has not encountered before, the excellent test results
(i.e., 93% for online model and 97% for offline model) indicate that the
proposed approach is highly scalable and can be generalised to other
study areas containing a different and larger set of devices.

4.2. Experiment 2: Comparing between dynamic and fixed time window
strategies

In this second experiment, we are interested in performing a com-
parison between the proposed dynamic time window strategy against
the fixed time window strategy commonly used in other studies. By
developing different models using the fixed time window strategy and
varying the length of the time window, their corresponding model
performance is plotted in Fig. 8, together with the best performing
online model identified in the previous experiment (Bagging algorithm
with a minimum dynamic time window of 5 minutes).

It can be observed from Fig. 8 that the model using a dynamic time
window strategy significantly outperforms any models using a fixed
time window strategy for all four performance metrics when the time
window is similarly set at 5 minutes. While the performance of the

models using a fixed time window strategy gradually rises when the
length of the time window increases, they were only able to match the
performance of the best performing online model when the time
window is set at 20 minutes, making it four times slower when making
its first identification at the start of an active period. Therefore, based
on these results, the effectiveness of the fixed time window strategy is
limited as it requires a choice between choosing a model with excellent
classification performance but has a long response time or a model that
is capable of making real-time identifications at significantly reduced
accuracy. Both of these cases are not ideal in an online setting that
requires the model to exhibit robust performance while having a short
time window.

4.3. Experiment 3: Evaluating model performances under different sampling
rates

In our final experiment, we are interested in evaluating the ro-
bustness of the proposed plug load identification approach under other
sampling frequencies that are lower than 1/60 Hz (equivalent to 1
sample every minute) and observe how the model’s performance is
affected. Therefore, different models are developed based on the pro-
posed plug load identification approach while using the same power
consumption dataset, which has been down sampled to lower sampling
frequencies. Their model performances are evaluated and compared in
Fig. 9.

Fig. 7. Accuracy delta values based on different minimum dynamic time windows Tmin. In this experiment, different models are developed under the same conditions
while only varying the minimum length of the dynamic time window Tmin.

Fig. 8. Model comparison between dynamic time
window strategy and fixed time window strategy. In
this experiment, different models are developed
under the same conditions while using a fixed time
window strategy with varying time windows. The
results are compared with the best performing online
model identified in Experiment 1, which uses a dy-
namic time window strategy of 5 minutes.
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The down sampling process is conducted by sampling the dataset at
regular intervals based on a lower sampling frequency starting from the
beginning until the end of the dataset to form a data segment. This
down sampling process is repeated multiple times, starting once again
from the beginning of the dataset for the remaining data points to result
in multiple data segments when all data points have been sampled. For
instance, if we are interested in obtaining a dataset with a sampling
frequency of 1/120 Hz (equivalent to 1 sample every 2 minutes), we
start by sampling the original dataset for every other data point to form
the first data segment. Following this, the remaining data points are
sampled to form the second and last data segment, resulting in a total of
two data segments obtained. In the case where the sampling frequency
is chosen to be 1/300 Hz (equivalent to 1 sample every 5 minutes), we
will obtain five data segments where the time interval between each
data point is 5 minutes apart. This down sampling process is adopted to
ensure that all data points are used for model development and is best
represented in Fig. 10, where the sampling frequency of interest is 1/
120 Hz.

It can be observed from Fig. 9 that the overall accuracy and ba-
lanced accuracy of all models generally decreases as the sampling fre-
quency continues to drop. This result is expected as the low sampling
frequency has an effect of masking or smoothening the transient power
fluctuations of the plug load during the active period, thereby making
plug loads that exhibit such power fluctuations less differentiable from
other plug loads that exhibit more stable consumption patterns.
Moreover, as the sampling frequency decreases, the length of each ac-
tive period also decreases, thus resulting in fewer data available for
model training. This effect has a more significant impact on plug loads,
such as task lamps and fans, that are normally used for shorter dura-
tions of time. On the other hand, the weighted accuracy and majority-
voted accuracy for most models showed some signs of improvement
despite the decrease in sampling frequencies from 1/60 Hz to 1/

1800 Hz (equivalent to 1 sample every 30 minutes). However, this
improvement in model performance did not continue when sampling
frequencies fall below 1/1800 Hz. Therefore, based on these results, we
can conclude that a real-time plug load identification model might not
be feasible when sampling frequencies fall below 1/120 Hz due to the
drastic drop in overall accuracy and balanced accuracy. However, in the
case of an offline system, the slight improvement in the models’
weighted accuracy and majority-voted accuracy show some potential
that an offline system can still be implemented with reasonable accu-
racy under extremely low sampling frequencies.

Apart from the evaluation results obtained through the above ex-
periments, it should be noted that a truly fair comparison between our
proposed approach and past approaches is challenging to achieve due
to the different conditions adopted during each study. For instance,
some studies included current and voltage information as additional
input features during plug load identification, or adopted a higher
sampling frequency during data collection (e.g., 1/2 Hz), or used an
extended time window during feature extraction (e.g., 1 hour). All of
these conditions provide additional information to the model resulting
in better model performance but also require additional effort to obtain,
which is difficult to quantify. Despite these favourable conditions, our
proposed approach was still able to report a comparable model per-
formance of up to 93% while using only the power consumption in-
formation, a much lower sampling frequency of 1/60 Hz, and a short
time window of 5 minutes to perform near-real-time plug load identi-
fication.

5. Practical applications

Given the promising performance of the proposed plug load iden-
tification approach, this section provides a detailed description of how
the approach can be integrated into existing load monitoring and

Fig. 9. Model performance under different sampling frequencies. In this experiment, different models are developed under the same conditions while only varying
the sampling frequency of the input power consumption data.

Fig. 10. Step-by-step representation of the down sampling process to obtain a final sampling frequency of 1/120 Hz (equivalent to 1 sample every 2 minutes).
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control systems to improve their performance in reducing plug load
energy consumption.

5.1. Automatic plug load identification in energy dashboards

One of the most direct application areas for the plug load identifi-
cation approach can be found in energy dashboards, which have be-
come increasingly common in residential buildings and smart office
spaces. Energy dashboards are designed to provide real-time feedback
on the occupants’ energy usage using load monitoring approaches such
as NILM and ILM, as described in Section 1. This feature is particularly
useful in the context of office spaces as occupants typically do not know
how much energy they consumed due to their plug load usage. Fur-
thermore, since they do not pay for their energy consumption, there is
no incentive for them to adopt environment-friendly habits leading to
energy wastage. Therefore, through the use of energy dashboards, dif-
ferent information can be presented to the occupants to inform them of
their energy consumption, display educational tips on reducing energy
wastage, and even compare their consumption patterns with their peers
to encourage more sustainable behaviours. This form of intervention is
commonly known as eco-feedback. Based on a study conducted by Yun
et al. [35], it was found that the use of an energy dashboard combined
with eco-feedback can result in energy savings of up to 9% in an office
space.

Despite the potential benefits of utilising energy dashboards to in-
form the occupants on their energy consumption levels, the highest
resolution of information that could be provided is often limited at the
desk level or at the electrical socket level, when ILM approaches are
adopted. Therefore, the use of the plug load identification approach to
automatically identify the plug load type based on its power con-
sumption patterns can further increase the level of data resolution and
translate that information into other informative visualisations for the
occupants. For instance, a detailed breakdown of the energy contribu-
tions of each plug load type can facilitate the design of conservation
initiatives that are specifically targeted towards reducing energy wa-
stage from high-energy loads. Some of these initiatives include equip-
ment replacement programs for older and less efficient plug loads,
adjusting power settings to reduce energy use during non-working
hours, and reminding occupants to turn off their plug loads before
leaving the office. Management support in these initiatives is also
crucial in ensuring the long-term adoption of these sustainable practices
[36]. Furthermore, an automatic plug load identification feature can
replace the current method of getting the occupants to provide the same
information into the load monitoring system, thereby reducing the
chances of mislabels and human effort during a large-scale im-
plementation.

5.2. Automated plug load scheduling and control system

Apart from monitoring the occupants’ energy usage and visualising
the information via energy dashboards, recent advancements in ILM
provides occupants with the flexibility to operate their plug loads re-
motely using smart power plugs. Different control strategies can also be
adopted when automating the controls of these plug loads, which in-
clude schedule-based or timer-based controls, occupancy-based con-
trols, and system-based controls [37]. Timer-based controls are used to
switch off plug loads based on a predefined schedule, such as during
non-office hours when occupants are expected to be away from the
office [38]. However, this type of control system is not suitable when
occupants exhibit more flexible occupancy schedules that can cause
significant disruptions when plug loads are prematurely switched off
when the occupant is still present in the office. Occupancy-based con-
trols work by switching off plug loads when the occupant is detected to
be away from a predefined space, such as his desk area, for a prolonged
period. The advantage of such a control system over time-based con-
trols is that it reacts well to the occupant’s stochastic occupancy

patterns. Finally, system-based controls are part of a building-wide
management system that monitors and controls the energy usage of the
entire building, using a web-based software with user-friendly inter-
faces to provide building managers with a detailed analysis of the
building’s energy consumption. Based on the same study conducted by
Yun et al. [35], it was reported that a combination of automated control
strategies and eco-feedback could result in energy savings of up to
35.4%.

Other than the various control strategies highlighted above, our
future work on automated plug load control systems will involve the
introduction of a new category of control strategies. This novel idea
involves a combination of different technologies to create a persona-
lised control system that adapt to the occupant’s behaviour over time.
Some features of such a control system will include the use of high-
resolution occupancy detection approaches [39,40] to capture the oc-
cupant’s stochastic movement schedules as well as an energy dashboard
for energy monitoring. Occupants can also provide their preferred
control settings for their plug loads through the same interface. By in-
tegrating the plug load identification model proposed in this study into
the control system, different control rules can also be automatically
assigned to each plug load type to minimise energy wastage and adapt
to the occupant’s specific usage habits. A prototype of the personalised
plug load control system will be developed as part of future work to
evaluate the energy-saving potentials of such a system.

6. Conclusion

In this study, we developed a near-real-time plug load identification
approach under extremely low sampling frequencies for several plug
loads that are typically found in an office space. The resulting model is
developed by first conducting a three-week data collection exercise in a
study area to obtain the power consumption patterns of different plug
loads operating in a real-world office environment. The data is captured
through a ZigBee network, which consists of several smart power plugs
that record the instantaneous power consumption of the connected plug
loads at a sampling frequency of 1/60 Hz. Once the raw power con-
sumption data is obtained, the next step involves identifying the active
periods of the plug load and performing feature extraction within each
active period using a dynamic time window strategy to capture the
unique characteristics of each plug load. Following this, the processed
data is randomly split into a training set and test set based on their
corresponding devices before training it on several classification algo-
rithms during model development. The performance of each resulting
model is evaluated based on four performance metrics, including
overall accuracy, balanced accuracy, weighted accuracy, and majority-
voted accuracy. A comprehensive evaluation of the proposed plug load
identification approach is performed by developing multiple models
under different parameter settings and comparing their model perfor-
mance through three separate experiments. The first experiment at-
tempted to identify the best performing model for online and offline
settings by observing the change in model performance when the
minimum length of the dynamic time window increases. In the end, the
Bagging algorithm with a minimum dynamic time window of 5 minutes
was chosen to be the best online model, while the same algorithm with
a minimum dynamic time window of 50 minutes was chosen to be the
best offline model due to its excellent performance in all four perfor-
mance metrics. The second experiment was conducted to perform a
comparison between the proposed dynamic time window strategy
against the fixed time window strategy commonly used in other studies.
It was concluded in the experiment that the proposed approach was
able to produce models that significantly outperform the other models
developed using the fixed time window strategy. Finally, the last ex-
periment was conducted to evaluate the robustness of the proposed
approach under other sampling frequencies lower than 1/60 Hz by
down sampling the current dataset and developing different models
based on those sampling frequencies. It was observed that the model’s
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overall accuracy and balanced accuracy generally decreases as the
sampling frequency decreases, while the weighted accuracy and ma-
jority-voted accuracy demonstrated some initial signs of improvement
when the sampling frequency is slightly decreased. Finally, the study
was concluded by highlighting two application areas that would benefit
from automatic plug load identification. The first application area is
related to energy dashboards where the automatic identification of
different plug load types can increase the level of data resolution and
result in the computation of other useful visualisations for eco-feed-
back. The second application area of the plug load identification ap-
proach is to support the development of a personalised plug load con-
trol system. The novel system uses a combination of different
technologies, including (1) high-resolution occupancy detection ap-
proaches to capture the occupants’ stochastic movement schedules, (2)
an user-friendly interface for occupants to provide their preferred
control settings, and (3) an automated plug load identification model to
assign different control rules to each plug load type. A prototype will
also be developed in future works to evaluate the energy-saving po-
tentials of such a system.
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