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Abstract

As the world rapidly urbanizes in pace with economic growth, the rising demand for products and services in cities is putting
a strain on the existing road infrastructure, leading to traffic congestion and other negative externalities. To mitigate the
impacts of freight movement within commercial areas, city planners have begun focusing their attention on the parking beha-
viors of commercial vehicles. Unfortunately, there is a general lack of information on such activities because of the heteroge-
neity of practices and the complex nature of urban goods movement. Furthermore, field surveys and observations of truck
parking behavior are often faced with significant challenges, resulting in the collection of sparse and incomplete data. The
objective of this study is to develop a regression model to predict the parking duration of commercial vehicles at the loading
bays of retail malls and identify significant factors that contribute to this dwell time. The dataset used in this study originates
from a truck parking and observation survey conducted at the loading bays of nine retail malls in Singapore, containing infor-
mation about the trucks’ and drivers’ activities. However, because of the presence of incomplete fields found in the dataset,
the authors propose the use of a generative adversarial multiple imputation networks algorithm to impute the incomplete
fields before developing the regression model using the imputed dataset. Through the parking duration model, the activity
type, parking location, and volume of goods delivered (or picked up) were identified as significant features influencing vehicle
dwell time, corroborating with findings in the literature.

As the world rapidly urbanizes in pace with economic
growth, major cities are becoming increasingly dense
with large urban freight traffic generators such as retail
malls producing and attracting many daily truck trips to
the area (/). The constant flow of freight activities con-
centrated at these localized sites leads to the issue of traf-
fic congestion which may propagate to other parts of the
road network, leading to system gridlocks and other neg-
ative externalities (2). With the continuing growth in
demand for retail products and services, city planners
and urban authorities have begun shifting their attention
to the parking behaviors of commercial vehicles (3) and
exploring various logistics initiatives aimed at reducing
freight-driven congestion (4-7).

The general lack of information on the conduct of
logistics delivery activities, caused by the heterogeneity
of practices between multiple stakeholders and the com-
plex nature of freight transportation, has led to a limited
understanding of the factors that contribute to the dwell
time of commercial vehicles and the resulting congestion
issues caused (8). As a result, only a handful of studies
have attempted to develop duration models to explore

the factors influencing commercial vehicle parking dura-
tion (9, 10). In an attempt to shed light on this growing
problem, past field surveys conducted at the loading bays
of urban retail malls are often faced with significant chal-
lenges, while relying heavily on traditional data collec-
tion methods such as observational studies and on-site
interviews (/0). As these methods are often labor-inten-
sive, error-prone, and subject to the consent of the inter-
viewee, this often leads to the collection of sparse and
incomplete data, thus limiting the validity of the post-
data analysis conducted.

The issue with incomplete and sparse data is not just
limited to freight studies but is also encountered in other
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fields such as the medical and social studies where parti-
cipants may choose to omit certain personal information
in their survey response because of privacy issues (//—
13). Therefore, various imputation methods have been
proposed in the past by researchers to deal with the issue
of incomplete data to facilitate a more meaningful
analysis.

Garcia-Laencina et al. (/4) attempted to categorize the
different methods of data imputation into two groups,
whereby the first group involved the use of statistical
analysis to perform imputation, while the second group
relied on machine learning approaches. Out of all of the
statistical methods of dealing with missing data, one of
the most successful methods was that proposed by Rubin
(15) with the concept of multiple imputation (MI). In
MI, the procedure attempts to replace each missing com-
ponent with a set of possible values to capture accurately
the variability in the feature containing missing fields. By
generating multiple completed datasets from the original
dataset, the former can be analyzed using standard meth-
ods before combining their results for further inference.
A particular imputation method that uses the concept of
MI is the multivariate imputation by chain equations
(MICE) algorithm (/6). In MICE, a series of regression
models are used to impute the missing data sequentially
by conditioning on the other variables that are both
observed initially and previously imputed. This process is
repeated in a round-robin fashion over multiple itera-
tions until the parameters governing the imputation
converges.

On the other hand, imputation methods based on
machine learning approaches generally consist of a data-
driven approach to perform estimations of the missing
components based on the observed data. Under this
category, the most popular approach is the K-nearest
neighbor (K-NN) method whereby a missing component
is estimated from a set of its K-nearest neighbors (deter-
mined according to a distance metric) containing the
complete feature set. Two other approaches that fall
under this category are the multi-layer perceptron impu-
tation (/7) and the autoencoder (/8). Both of these
approaches use a similar idea of performing imputation
whereby a multi-layer network is trained on a complete
dataset with the observed data introduced into the net-
work as input features and produces the missing data as
output. Different loss functions are selected to ensure
that the distribution of the imputed values approaches
the true distribution of the missing data. The limitation
of these approaches is that they need to be trained ini-
tially on a complete dataset which may not be available.
With the recent successes in the application of generative
adversarial networks (GANs) to many real-life problems,
Yoon et al. (/19) proposed the generative adversarial
imputation network (GAIN) algorithm to overcome

these limitations encountered by other imputation
approaches. The GAIN algorithm works by training two
neural networks, a discriminator and a generator, pitted
against each other in an adversarial relationship. By
passing the incomplete data vector into the generator,
imputation is performed based on the observed compo-
nents to output a complete dataset. This dataset is subse-
quently passed into the discriminator where it will
attempt to differentiate between the observed compo-
nents against those that are imputed. As the objective of
the generator is to impute the missing components such
that the discriminator is unable to differentiate between
the imputed and the observed components, both neural
networks possess opposing objective functions. A theore-
tical analysis has also been conducted to prove that the
generator can replicate the joint distribution of the origi-
nal data. This approach has been tested on various
benchmarking datasets and was shown to outperform
many state-of-the-art imputation methods.

The dataset used in this study originates from a truck
parking and observation survey conducted at the loading
bays of nine urban retail malls in Singapore, containing
visual information about the delivery activity as well as
the drivers’ delivery patterns. Given the presence of
incomplete fields found in the dataset, the primary objec-
tive of this study is to develop a regression model to pre-
dict the parking duration of each commercial vehicle
using the incomplete data and to identify significant fac-
tors related to dwell time during delivery activities. The
regression model is developed using a two-step process
whereby the presence of incomplete fields found in the
dataset is addressed during the imputation step through
the introduction of a generative adversarial multiple impu-
tation networks (GAMIN) algorithm. The GAMIN algo-
rithm is an extension of the GAIN algorithm proposed by
(19), which reduces the implementation complexity and
allows for MI. By generating multiple imputed versions of
the original dataset, these datasets will be passed through
separate regression models in the regression step to pro-
duce multiple predictions and will be combined through
averaging to output the final prediction.

Through this study, the significant factors related to
the dwell time of commercial vehicles can be identified,
allowing city planners and building management to
review the effectiveness of existing and future logistic
management schemes. Future extensions of this study
can also include the proposal of more effective parking
management policies at existing loading bays to lessen
the impacts of congestion during delivery peak hours.

Data Description

The dataset used in this study originates from a commer-
cial vehicle parking and observation survey that was
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conducted at nine urban retail malls in Singapore over
12 separate weekdays between 2015 and 2018 (/0). For
the first two urban retail malls, a combination of road-
side video recordings, a loading bay observation survey,
and electronic parking records was used to capture a
comprehensive view of the activities occurring at both
retail malls under observation.

Road-Side Video Recordings

Video cameras were placed at several strategic locations
around the shopping mall to capture the flow of delivery
traffic. These locations include the entrance and exit of
the service road as well as the entrances and exits to vari-
ous parking facilities such as the loading bay and the cus-
tomer car park. The video recordings were subsequently
post-processed using a license plate recognition algorithm
to create a sequence of timestamps describing different
phases of each delivery. These timestamps include the
time of arrival and departure from the retail mall, the
amount of time spent queuing at the service road, as well
as the amount of time spent parked at the loading bay.

Driver Survey and Vehicle Observation

During the conduct of the driver survey, surveyors were
stationed at various parking locations around the retail
mall, such as the customer car park, the loading bay, and
on the streets to capture illegal on-street parking. The
surveyors were also trained to observe and record spe-
cific details about the activity conducted, including the
activity type, commodity type, volume of goods picked
up or delivered, vehicle type, and vehicle stop duration,
among other visual information. Next, the surveyors
were instructed to approach the delivery crew to conduct
a short face-to-face interview to gain more information
about their delivery patterns. This information includes
the number of tours made daily, the number of stores
they serve in the retail mall, as well as the number of
retail malls they serve in the vicinity among other details.
However, because of their busy schedules, it was not
uncommon for the delivery crew to refuse to participate
in the interview portion of the survey, resulting in incom-
plete fields found in the dataset.

Electronic Parking Records

The parking facilities in Singapore’s retail malls are also
equipped with an electronic gantry system that recog-
nizes and records the entry and exit times of every vehicle
via its in-vehicle unit. Vehicle owners will be charged
based on the amount of time spend in these parking facil-
ities when exiting through the gantry. By accessing these
electronic records, it is possible to obtain detailed infor-
mation about the vehicles’ arrival and departure times,

parking duration, and parking location (i.e., customer
car park or loading bay).

For the remaining seven urban retail malls, data col-
lection was mainly concentrated at the loading bay where
only the driver survey and vehicle observation were con-
ducted. Table 1 presents a short description of each fea-
ture captured in the dataset, together with its respective
missing rate.

Methodology

Because of the presence of incomplete fields found in the
dataset, the development of the parking duration model
follows a two-step approach. The first step involves the
imputation of missing values found in the dataset by
implementing the GAMIN algorithm to obtain a com-
plete dataset. The dataset is subsequently passed through
a regression algorithm to develop the final parking dura-
tion model in a supervised fashion.

Notation Definition

The following set of notation will follow the same nota-
tion used by Yoon et al. (/9) for ease of comparison
between the two algorithms for the interested reader.

Consider a d-dimensional space x = x; X ... XXy
where d represents the number of features in the dataset.
Suppose that data vector X = (X,...,Xy) is a random
variable containing either continuous or binary values in
X, while mask vector M = (M, ..., My) is a random vari-
able taking values in {0,1}%. For each i e {1, ...,d},
X; = X; U{*} where * represents an unobserved value not
found in x;. Let x = x; X ... XX, where we define a new
variable X = (f(l, ...,)?d) € X based on Equation 1:

o (X if My =1

X = { *, otherwise ()
Therefore mask matrix M indicates the components of X
that can be observed.

Throughout the remainder of the paper, lower-case
letters will denote the realization of a random variable.
For instance, n independent and identically distributed
(i.i.d.) copies of X will be denoted by ', ...,¥", while the
dataset D is denoted by {X',m'}!_ |, where m' is the mask
matrix corresponding to ¥'.

Imputation: GAMIN Algorithm

The imputation of the missing values found in dataset D
is achieved by implementing the GAMIN algorithm,
which is an extension of the GAIN algorithm by improv-
ing the latter’s implementation and introducing the con-
cept of MI into the algorithm. The GAMIN algorithm,
similar to the GAIN algorithm, seeks to impute the
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Table I. Description of Data Features and Their Respective Missing Rates

Feature Missing rate Description Data source

Mall 0.000 The retail mall where the activity was conducted. Possible na
values range from Mall A to Mall | to represent the nine
urban retail malls.

Entry hour 0.000 The time where the vehicle arrives at the mall (rounded to Video recordings,
the nearest hour). observations, parking

records

Parking location 0.002 The location where the vehicle is parked when conducting Video recordings,
activities. Possible values include Car Park, Loading Bay, and observations, parking
Street. records

Vehicle type 0.051 Possible values include Truck or Van. Observations

Activity type 0.424 The type of activity conducted. Possible values include Deliver, Observations
Pick up, Deliver & Pick up, and Service.

Refrigerated 0.174 Is the commercial vehicle refrigerated? Possible values include Observations
Yes and No.

Commaodity type 0.528 The type of goods delivered. Possible values include Clothing Observations
and Accessories, Cosmetics and Cleaning, Electronics, etc.

Payload (%) 0.456 How full was the commercial vehicle when first arriving at the Observations
retail mall? Possible values include 0—-25%, 25-50%, 50-75%,
and 75-100%.

Initial payload (%) 0.737 How full was the commercial vehicle at the beginning of the Driver survey
tour? Possible values include 0—25%, 25-50%, 50-75%, and
75—100%.

Delivery volume (m?) 0.473 The amount of goods delivered to the retail mall. Observations

Pickup volume (m?) 0.550 The amount of goods picked up from the retail mall. Observations

Single/bundle 0.053 Single indicates that only a single type of commodity is being Observations
delivered, picked up, or both. Bundle indicates that different
types of commodities are being delivered, picked up, or both.

Number of workers 0.563 The number of workers helping out with the activity. Observations

Store count 0.654 The number of stores served by the delivery crew in that Driver survey
retail mall.

Mall count 0.934 The number of malls served by the delivery crew in the Driver survey
vicinity.

Employer 0.639 The delivery crew’s employer. Possible values include Carrier, Driver survey
Receiver, Retailer, Shipper, Supplier, and Transport Provider.

Number of tours 0.839 The number of tours made by the delivery crew on a daily Driver survey
basis.

Is service vehicle 0.974 Is the vehicle a service vehicle? Possible values include Yes and Observation
No.

Number of stops/tour 0.980 The average number of stops made during each tour. Driver survey

System occupancy 0.233 The total number of commercial vehicles in the retail mall, Video recordings,
including those that are queuing up to make a delivery. observations, parking

records
Parking duration (min) 0.000 The total amount of time the commercial vehicle is parked Video recordings,

while the delivery crew is conducting their activities.

observations, parking
records

Note: na = not applicable.

missing values in each ¥ by generating complete data

function, and Z = (Z,, ...,

Z;) be a d-dimensional noise

vectors according to the distribution P(X|X = &'). This
imputation step is achieved by pitting a generator net-
work against a discriminator network in an adversarial
relationship, following the architecture of GANS.

Generator. The generator network G takes in realizations
of X, M, and Z as input to generate a complete data vec-
tor X. Let G : x X {0,1}* X [0, l}d — x be the generator

matrix. The random variables X, X € x are therefore
defined in Equations 2 and 3 as:

X=GMoX+(1-MoZ) (2)
X=MoX+(1-M)oX (3)

where the symbol ©® denotes element-wise multiplica-
tion. X corresponds to the imputed data vector which is
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obtained by taking X and replacing each missing value *.
with its corresponding value in X.

To introduce the concept of MI into the algorithm,
multiple noise matrices Z;,j = 1,...,J will be generated
from the same noise distribution where J is the total
number of imputation that the user is interested in gener-
ating from the same dataset D. Each set of (X,M,Z))
will be passed into the generator as input to produce the
following output as defined in Equations 2a and 3a:

X=GMoX+(1-M0oZz) (2a)
Y=MoX+(1-MoX (3a)

Note that for each noise matrix ZJ, the same M and X are
used as input to produce X; and Xj.

Discriminator. By passing the imputed data vector X; into
a discriminator network D, the objective of discriminator
D is to accurately distinguish between the components
that are initially observed against those components that
are imputed by generator. This process is equivalent to
predicting the mask matrix M, which can be obtained
from the original data vector X. The formal representa-
tion of discriminator D is a function D : x — [0, 1]¢ with
the i component of D(X;) corresponding to the prob-
ability that the i component of )A(J was observed and not
imputed by generator G.

Hint Mechanism. Yoon et al. (19) proposed in the original
paper that it was necessary to pass a random variable H
as an additional input into discriminator D to ensure that
generator G reproduces a single distribution that will be
optimal with respect to D. This matrix H, which takes on
values from the space H, serves as a hint mechanism as it
contains information about M through the distribution
H|M = m. With the introduction of H into discriminator
D, the function becomes D : x X H — [0, 1], where the
i component of D(X JH ) corresponds to the probability
that the i component of X was observed, conditional on
X and H. By defining H differently, the authors were able
to control the amount of information passed to D.

However, it will be shown in the subsequent sections
that the introduction of A into discriminator D causes its
performance to converge too rapidly and therefore
affects the training process of generator G. Instead, the
introduction of a noise matrix N is propose to limit the
performance of discriminator D which will, in turn,
improve the training process of generator G and its abil-
ity to impute missing values.

Objective Function. As the objective of discriminator D is
to identify accurately the components that are imputed
against those that are observed, D is trained to maximize

the probability of correctly predicting M through
Equations 4 and 5:

min —Lp (M, M) (4)
where Lp(M,M) = Mlog(M) + (1 — M)log(1 — M) (5)

On the other hand, generator G is trained to fool discri-
minator D into thinking that an imputed component is
observed, while at the same time output values that
closely replicate the components that were originally
observed. Therefore, the objective function of generator
G is broken into two parts.

The first loss function Lg:{0,1}* x[0,1]* = R is
used to quantify the ability of generator G to fool the
discriminator into misclassifying the imputed compo-
nents as observed and generate imputed values that repli-
cate the joint distribution of the dataset. This is given by
Equation 6:

LM, M) = — (1 —M)log(M) (6)

While the second loss function, £ : RYXR? - R is
used to quantify the ability of generator G to reconstruct
the values initially observed. This loss function is similar
to artificially removing values from the dataset and eval-
uating how well these values can be recovered. This is
given by Equation 7:

In the original GAIN algorithm, Ly (X, X) is defined dif-
ferently depending on whether X contains continuous
values or binary values.
N . .
Lu(X,X) = (X —X) Jif X s continuous gy
—Xlog(X),if X is binary

In the case where X is continuous, the scale of the values
between the first loss function Lg (M M ) and the second
loss function £y, (X,X) would be different, making it nec-
essary to introduce a hyper-parameter « when combining
both loss functions. This combination produces the follow-
ing weighted sum loss function as shown in Equation 9.

min L(M, M) + aly (X, X) )

However, it is challenging to define an appropriate «
value in this case, as it changes depending on the number
of missing components found in the dataset (or batch if
training is conducted in batches). Failing to select the
appropriate o value will cause the weight of one of the
loss functions to greatly exceed the other, causing
the minimization of the one of the loss functions to be
prioritized over the other. Therefore, we will assume that
X only contains binary values, allowing us to redefine



Low et al

825

= ™

Imputation Step

Mask Matrix

Z12 | Z13 | %14 | Z15

Z22 | Z23 | Z24 | Z25

Z32 | Z33 | Z34 | Z35

Model
| | Training and
Testing

l =
1

| N
D .

1
L

Gradient Boosting Model

: Prediction
Averaging

: : Regression Step

Duration Prediction Loss

Figure 1. Graphical representation of methodology of this study.

the second loss function, £y : [0,1]¢ X {0,1} — R, and
remove the a value from the final loss function (since o
= 1 when X is binary) to give Equation 9a.

mlnﬁ(;(M,M) +£M()~(,)_() (93)

Regression

The imputed data vector X can be subsequently passed
into a machine learning model together with its corre-
sponding parking duration Y to perform model training
in a supervised fashion. With the inclusion of MI in the
proposed imputation algorithm, multiple imputed data
vectors X; can be obtained from the same data vector X

and passed into separate regression models to generate
different predictions +y;. These predictions are ultimately
combined via averaging to produce the final prediction
v. A graphical representation of this study’s methodol-
ogy can be found in Figure 1.

Implementation
Data Preprocessing

Before the dataset was passed through the GAMIN algo-
rithm to perform the imputation step, several data pre-
processing steps were taken in the following order. By
plotting the distribution of the parking duration, it is
observed from Figure 2 that the dataset suffers from a
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Figure 2. Distribution of parking duration before and after data
cleaning.

“long tail” problem whereby a tiny percentage of the
vehicles reported unusually large values for their parking
durations. These extreme cases, if left in the dataset,
could potentially prevent generator G from learning the
true distribution of the missing features, thereby produc-
ing a prediction model that learns from incorrect data
and therefore fails to generalize well to future unseen
data. Therefore, to address this potential problem, a cut-
off boundary was set such that any delivery with a park-
ing duration that falls beyond two standard deviations
from the mean will be considered as an outlier and
removed from the dataset. In the end, 89 instances
(4.30%) were removed from the original dataset, result-
ing in a final dataset of 1,983 delivery entries.

Next, given that the GAMIN algorithm assumes that
X contains only binary values, the numerical features
found in the dataset (i.e., delivery volume, pickup vol-
ume, etc.) will be discretized into binary classes. This is
achieved by calculating the first ( 1), second ( 02), and
third ( Q3) quantiles of each numerical feature, and
grouping the values of a particular feature into the same
class if it falls into any one of the following cases: (i)
below Q1, (ii) between Q1 and Q2, (iii) between Q2 and
03, or (iv) higher than Q3. The result is four discrete and
similarly sized classes for each numerical feature. By
ensuring that the distribution of each class is fairly even
any class imbalance issue that biases generator G toward
imputing the most frequently occurring classes during
the imputation step is avoided. Finally, by performing
one-hot-encoding on the resulting dataset, we end up
with a data matrix X, which contains only binary values.

Although the implementation of the discretization step
was deemed necessary to obey the assumption of the
GAMIN algorithm, the second reason for discretizing the
dataset stems from the data collection approach adopted
in this study. Given that most of the features are obtained
via traditional data collection approaches, the observation
and response errors that come with the visual observation
of the activity and face-to-face interviews can be reduced if

these features take on a range of values (through discreti-
zation) instead of an absolute numerical value. Therefore,
by reducing the precision of the numerical features, we are
also attempting to improve the accuracy of the informa-
tion captured in the dataset, which will improve the per-
formance of the parking duration model.

Algorithm

The GAMIN algorithm follows the usual GAN approach
of iteratively training the discriminator and generator by
sampling mini-batches of size K from the dataset during
each training iteration. By modeling the discriminator D
and generator G as fully connected neural networks, the
algorithm begins by optimizing discriminator D with a
fixed generator G by computing a corresponding noise
matrix z(j) for each sample in the mini-batch (%(;), m(j)).
Next, using X(f), m(j), and z() as input, generator G pro-
duces a complete data matrix x( ) which will be combined
with %(j), for the observed components, to result in the
imputed data matrix (/). The parameters of discrimina-
tor D are adjusted during each training cycle to optimize
its ability to differentiate between the imputed compo-
nents against those originally observed.

Next, generator G is optimized against the updated
discriminator D by using %(j), m(j), and z() to calculate
its loss function. This loss function is dependent on gen-
erator G’s ability to fool discriminator D into thinking
that the imputed components are observed, while at the
same time generating values that replicate the originally
observed components. This process is repeated until the
performance of both discriminator D and generator G
converges.

MI is achieved by generating multiple z;(j) values for
the same mini-batch (¥(;), m(j)) and passing it through
generator G to produce / imputed data matrices %;(j),
where i = 1, ..., I and I equal to the number of imputa-
tions carried out. By passing each imputed data matrix
%i(j) through a separate regression model, the predic-
tions made by each regression model are combined
through averaging to produce the final prediction. In this
study, the gradient boosting algorithm (20) is selected,
because of its superior predictive performance over the
other regression algorithms tested, and allows us to cal-
culate the importance score of each feature to identify
the significant factors related to parking duration. The
algorithm follows an iterative functional gradient descent
approach that minimizes its loss function Lr(y;,y) by
iteratively introducing base learners b,,(%(;)), defined
based on the errors made by the current model
Fo_1(%(Jj)) to boost model performance. Because of its
robust performance, it has also been used in many other
application areas such as activity recognition and indoor
localization (21-24).
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A preliminary implementation of the GAMIN algo-
rithm described up to this point showed a rapid conver-
gence in the performance of discriminator D within the
first few iterations and prevents generator G from further
improving its performance. This phenomenon is also
commonly known as the vanishing gradient problem
(25). Therefore, to address this particular issue, the fol-
lowing measures were introduced in the GAMIN algo-
rithm to slow down the convergence rate of discriminator
D. The first measure was to select an optimizer using a
slower algorithm for discriminator D, such as the sto-
chastic gradient descent optimizer, while the Adam opti-
mizer was used to train generator G. The second measure
involves allowing generator G to update its parameters 7'
times for every time the parameters of discriminator D is
updated. By setting different 7 values, this allows us to
adjust the amount of advantage that is given to generator
G during the training process. Finally, the last measure
involves introducing a noise matrix N as input into discri-
minator D instead of the hint matrix H proposed by
Yoon et al. (19) to further disrupt the training process of
discriminator D. The pseudo-code for the final algorithm
is presented in Algorithm 1.

Comparison of Results

The performance of the imputation algorithm is evalu-
ated by randomly removing 10% of the initially observed
information from the commercial vehicle parking and
observation survey dataset and calculating the imputa-
tion error. Since X is assumed only to contain binary val-
ues, the imputation error will be calculated using a cross-
entropy loss function, as shown in Equation 10.
Furthermore, to ensure that an accurate regression
model can be trained based on the imputed dataset, the
mean absolute error (MAE) between the predicted park-
ing duration vy and the true parking duration Y will be
used as a secondary performance metric when evaluating
the imputation algorithm (refer to Equation 11).

Mremoveeremovedlog( removed) (10)

Eimpulation =
1 P
MAE = Fp;\vp—Ypl (11)

where Miemoved 1S @ mask matrix indicating the artificially
dropped values, Xiemoved Tepresents the imputed matrix
for the dropped values, and P indicates the size of the test
dataset.

The performance of the GAMIN algorithm is evaluated
against other baseline imputation algorithms by passing
the same training and test datasets through the K-NN
algorithm, the MICE algorithm, as well as the original
GAIN algorithm before using the imputed datasets to

Algorithm | Pseudo-code for GAMIN algorithm and regression step

(1) Training discriminator D and generator
G using GAMIN algorithm
for number of training iterations do
(1a) Optimize discriminator D
Draw K i.i.d. samples from the dataset {(x(}), m(j))};(: |
Draw K i.i.d. samples {z(j)};(: , from Z

Draw K i.i.d. samples {n(j)}}(: | from N
forj=1,...,Kdo
%(j) — G(m(j) ©%() + (1 - m(§)) © 2(j))
%(j) — m(j) ©x() + (I - m(j)) ©x()
end for
Update D usmg Stochastic Gradient Descent optimizer

Vo = 351 Lo(m(j), D((j). n(j)))

(Ib) Optimize generator G
fort=1,...,Tdo
Draw K i.i.d. samples from the dataset {(x,(j), mt(j))};(: |
Draw K i.i.d. samples {zt(j)};(: | from Z
Draw K i.i.d. samples {nt(j)};(: | from N
forj=1,...,Kdo
xi(J) — G(me(j) © x:(j) + (I
xi(j) = me(j) O xe(j) + (1 -
end for
Update G using Adam optimizer
Ve — 3 [La(mi(j): D (j). ()
+ Ly(xe()), (), me(j))]
end for

—mi(j)) ©

z(j))
m(J)) © xe(j)

(2) Training the gradient boosting model
fori=1,...,Ido
(2a) Imputation step
Draw Z; from Z
X —GMOX+ (I -M)eZ)
Xi—MoX+ (1 -M)oX.

(2b) Regression step
Fo (X,) = argminy, Lr(Y,";)
for number of estimators do

Fm (X,) = Fm,| ()A(,) + argminbmegﬁk (Y, Fm,| ()A(,) + bm ()A(,))
end for
end for
I ~
v = Zr‘ \F’”(X‘)
[

perform model development. Each gradient boosting
model uses an identical set of hyperparameters to ensure a
fair comparison between the different imputation methods.
On top of the proposed GAMIN algorithm, GAMIN
(Noise), we have also included the evaluation results for
different variants of the GAMIN algorithm. The second
variant, GAMIN (Hint), involves replacing the proposed
noise matrix N, which is part of the input into discrimina-
tor D, with a hint mechanism H as recommended in the
original GAIN algorithm (/9). A third variation of the
GAMIN algorithm, GAMIN (No Hint), involves remov-
ing the noise matrix N entirely such that the sole input into
discriminator D is X;. The performance of each imputation
method is captured by repeating the imputation step using
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Figure 3. Performance comparison between different imputation methods. The figure on the left shows the imputation error of each
method, where the lower the imputation error, the better the imputation performance. The figure on the right shows the performance
of the resulting parking duration models that were developed based on the same dataset imputed using different imputation methods.
Note: GAMIN = generative adversarial multiple imputation networks; GAIN = generative adversarial imputation network; KNN = K-nearest neighbor;

MICE = multivariate imputation by chain equations.

different pairs of training and test datasets and plotting
the results, as in Figure 3.

As shown in Figure 3, the GAMIN (Noise) algorithm
was able to outperform the baseline imputation algo-
rithms, such as K-NN, MICE, and the original GAIN
algorithm, by producing a lower imputation error but
also producing a parking duration model that is more
robust to changes in the training dataset. These results
can be attributed to the GAMIN algorithm’s better abil-
ity to represent the variability in the missing features
through the generation of multiple completed datasets
from the original dataset.

Furthermore, while a comparison of the resulting
imputation error and predictive performance among dif-
ferent variants of the GAMIN algorithm did not pro-
duce a clear winner, especially between GAMIN (Noise)
and GAMIN (Hint), GAMIN (Noise) was more robust
to changes in the training dataset as demonstrated by its
smaller variance in predictive performance. This result
may be attributed to the introduction of noise matrix N
into discriminator D, which disrupted its training process
and increased its convergence time toward optimality.
This statement is supported in Figure 4, which shows a
slower convergence rate for discriminator D when using
the GAMIN (Noise) algorithm, as compared with other
variants of the algorithm. Because of discriminator D’s
slower convergence rate, this provides generator G with
more time to update its parameters, thereby possibly
producing a more stable generator G.

Practical Findings and Applications

After implementing the GAMIN (Noise) algorithm to
address the issues of incomplete data and using the

) = GAMIN (Noise)
10l ® — = GAMIN (Hint)
' A N GAMIN (No Hint)
0.8
-
0.6
041, , , , , ,
0 10 20 30 40 50
Iteration (in 100s)

Figure 4. Convergence rate of discriminator D using different
variants of the generative adversarial multiple imputation
networks (GAMIN) algorithm.

gradient boosting algorithm to develop the parking dura-
tion model based on the completed datasets, this section
will explore the significant factors that are related to
vehicle dwell time. This objective is achieved by assigning
a numerical value, or feature importance score, to each
input feature describing the value of a particular feature
in constructing the regression model. In the case of a sin-
gle decision tree, this feature importance score is defined
by the amount of performance improvement achieved by
each attribute split point, weighted by the number of
samples that are affected by the split. Given that a gradi-
ent boosting model, which is made up of an ensemble of
decision trees, is adopted in this study, the feature impor-
tance score is calculated by averaging over the scores
from each decision tree used within the model (26).
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Figure 5. Pareto chart of the feature importance scores for the
most significant input features.
Note: CP = customer car park; LB = loading bay.

By plotting the feature importance score of each input
feature on a Pareto chart arranged in descending order,
Figure 5 shows a Pareto chart of the most significant fea-
tures in the parking duration model responsible for 75%
of the total feature importance score (equals to 1.0).
While the feature importance score of several of the fea-
tures changes slightly when the algorithm is repeated on
different training and test dataset pairs, features such as
the parking location, volume of goods delivered (or
picked up), and activity conducted consistently possess
the highest feature importance scores among the other
features considered in this study.

The results of this study corroborate the findings of
Dalla Chiara and Cheah (/0), which highlighted that the
parking duration of commercial vehicles differs signifi-
cantly depending on their parking location. More specifi-
cally, it was reported that the dwell times of commercial
vehicles parked illegally along the streets are significantly
lower than those parked in the customer car park and
loading bay, with the vehicles in the loading bay report-
ing the most prolonged parking duration. This phenom-
enon was explained by mentioning that the driver was
most likely aware of the expected amount of time that is
necessary to complete the delivery. Therefore, in the case
where a delivery can be completed within a short period,
the delivery crew might choose to park illegally on the
streets when performing their activities to avoid the
queue at the loading bay and save time.

Parking duration is also found to have a positive cor-
relation with the volume of goods delivered (0.382), with
larger volumes of goods requiring a more extended
amount of time to be unloaded from the vehicle, and
subsequently delivered, and accounted for when the retail
staff receive the delivery. A similar argument applies

(0.105) when a large volume of goods is picked up by the
driver, as an extended amount of time is taken to trans-
port and load the goods onto the vehicle.

Thirdly, the activity type that the driver is conducting
also provides valuable information about the dwell time
of the commercial vehicle. The parking duration when
the driver is conducting a Deliver activity or a Pick up
activity takes an average of 18 min, with the former hav-
ing a higher variance than the latter. When a Deliver &
Pick up activity is conducted, the parking duration
increases to an average of 32min with the volume of
goods that are being delivered and picked up further
increasing the variance in vehicle dwell time. Finally, ser-
vice vehicles parked at the loading bays have an average
dwell time of approximately 17 min and a similarly high
variance when compared to the commercial vehicles per-
forming a Deliver & Pick up activity.

Based on the insights gained from this study, a practi-
cal application of this work for building managers is to
implement a similar model based on the data collected
from existing malls to determine the parking duration of
each commercial vehicle arriving at the loading bay. By
ascertaining the nature of the delivery activity that will
be conducted (i.e., activity type, delivery volume) before
the vehicle’s arrival, vehicles with shorter delivery times
can be assigned to express lots, while vehicles with longer
delivery times are assigned to regular lots. An extension
of this implementation will involve asking the carriers to
provide information about their activities through a
mobile application where the estimated dwell time will
be passed through a scheduling system to assign a desig-
nated parking lot to each commercial vehicle. The objec-
tive of the scheduling system could be tuned to maximize
the number of commercial vehicles passing through the
system (i.e., throughput), thereby ensuring the efficient
use of scarce parking resources and reducing conges-
tion during delivery peak hours. Based on the type of
parking lot assigned to each commercial vehicle, differ-
ent parking fees can also be imposed to ensure system
integrity. For instance, vehicles that are assigned to the
express parking lots might not be charged for the first
30 min but parking fees would then increase exponen-
tially with time beyond the grace period. This measure
is aimed at preventing the delivery crew from underre-
porting their delivery information to enter the express
lots. On the other hand, vehicles entering the regular
parking lots will be charged with a parking fee that
increases linearly with time to provide the delivery crew
with more time to conduct their activities. Finally, the
installation of dock levellers and belt conveyors at the
regular parking lots can assist the delivery crew in load-
ing and unloading their goods, thereby reducing the
delivery time for each vehicle.



830

Transportation Research Record 2674(9)

Conclusion

This study developed a regression model to predict the
parking duration of commercial vehicles operating at the
loading bays of urban retail malls. The dataset used in
this study originates from a truck parking and observa-
tion survey in Singapore that contains information about
the trucks’ and drivers’ activities. Because of the presence
of incomplete fields found in the dataset, an imputation
algorithm known as GAMIN was used to fill in the miss-
ing fields before developing a gradient boosting model
using the imputed dataset. A comparison of the GAMIN
algorithm with other baseline imputation methods such
as K-NN, MICE, and GAIN showed that the GAMIN
algorithm was able to generate datasets that developed
better prediction models. Furthermore, by comparing
the performance between different variants of the
GAMIN algorithm, it was concluded that the introduc-
tion of a noise matrix N into discriminator D would
improve the performance of the imputation algorithm.
Finally, based on the parking duration model developed,
activity type, parking location, and volume of goods
delivered (or picked up) were identified as significant fac-
tors related to the parking duration of the commercial
vehicle, which corroborates with findings in the litera-
ture. An extension of the current work would involve an
in-depth study of the causal effects of each feature fol-
lowing the analysis conducted by McCaffrey et al. (27)
whereby the propensity scores of different features were
analyzed according to a gradient boosting regression
algorithm. This information will be useful for city plan-
ners in the design of future loading bays and urban
freight initiatives that are aimed at reducing congestion
because of freight activities.
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