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A B S T R A C T

Plug load management systems are touted as promising solutions to reduce the rising energy consumption of
plug loads in commercial buildings through different load monitoring and control strategies. However, their
real-world applications remain relatively unexplored due to several issues related to deployment viability,
energy-saving potentials, and system acceptance. Given these limitations, this paper proposes Plug-Mate, a
novel IoT-based occupancy-driven plug load management system that reduces plug load energy consumption
and user burden through intelligent plug load automation. The proposed system uses an interconnected network
of modules and subsystems to perform plug load automation based on the users’ (1) high-resolution occupancy
information obtained through a non-intrusive indoor localisation system, (2) plug load type information
inferred through an advanced plug load identification feature, and (3) diverse control preferences through
a personalised user interface. To demonstrate the system’s feasibility, six control strategies were evaluated
during a 5-month field study in a university office space. Each control strategy involved different levels of
plug load automation (i.e., manual, predefined schedules, and occupancy-driven) and was assessed based on
their energy savings and user satisfaction levels to identify the optimal balance between automation and user
control. Based on this evaluation, the best control strategy reported an average energy savings of 51.7% among
different plug load types evaluated, achieving a 7.5% reduction in the building’s energy use and the highest
user satisfaction score of 4.7 out of 5. Finally, we concluded this work by highlighting the system’s deployment
feasibility for a building-wide implementation to guide future real-world applications.
1. Introduction

Plug load usage in the workplace has been steadily rising over the
last two decades and contributes up to 30% of the total energy con-
sumption in a standard office building [1]. In this context, plug loads
refer to electrical devices that draw power from the building’s electrical
sockets and exclude conventional heating, cooling, and lighting loads in
the building. Based on the latest projections released by the U.S. Energy
Information Agency, the energy consumption of office plug loads such
as laptops, desktops, and monitors is expected to experience the highest
rate of growth of up to 2.5% each year till the year 2050 [2]. Especially
in the case of high-efficiency buildings, the energy contributions of plug
loads can reach up to 50% due to the increased efficiencies of other
building systems such as HVAC and lighting systems [3].

In view of these energy trends, plug load management systems
have been touted as a promising solution to reduce the rising energy
consumption of plug loads. This is achieved by utilising a network of
smart plugs to monitor the real-time and historical power consump-
tion information of different plug loads operating within the building.
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Other useful capabilities of such systems include using different control
features such as remote control and schedule-based control to empower
users to actively manage their plug loads based on predefined operating
schedules to reduce energy wastage.

While plug load management systems have been commonly applied
within the residential context under the broad definition of smart home
systems, their application within commercial workplaces have not been
well investigated. Despite the rising energy contribution of plug loads
towards the building’s overall energy use, more attention has been
placed on developing smart energy management systems for other
building systems such as lighting and HVAC systems due to their high
energy contributions. The few studies that investigated the adoption of
plug load management systems within commercial spaces also reported
user concerns related to the inconvenience of actively managing their
plug loads while performing their jobs and the worrying prospect of
losing control of their critical devices [4]. These findings highlight
the need to develop more intelligent plug load management systems
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capable of reducing the users’ burden by automating their plug load’s
operation to reduce energy wastage while ensuring that users can still
maintain control over their plug loads.

Given these findings, several promising advancements have been
made in the field of occupancy-driven control systems, which can
automate the operation of different building systems based on the
occupancy information in the building [5]. Successful applications of
such technologies have been found in HVAC and lighting systems
where the temperature setpoint and luminaries’ brightness levels can be
adjusted based on the building’s real-time occupancy levels to reduce
energy wastage [6,7]. However, the application of this technology in
plug load management systems is still in the infant stages and requires
more investigation regarding its feasibility in real-world applications.

1.1. Study objective and contributions

The objective of this study is to address the rising energy contri-
butions of plug loads in the workplace by proposing a novel IoT-based
occupancy-driven plug load management system named Plug-Mate. The
contributions of this study are listed as follows:

• The proposed system is equipped with a non-intrusive indoor lo-
calisation system, advanced plug load identification capabilities,
and a personalised user interface to automate the users’ plug loads
based on their high-resolution occupancy information, plug load
type and diverse usage preferences.

• Six different plug load control strategies (i.e., manual controls,
predefined schedules, occupancy-driven controls, and hybrid con-
trols) were evaluated based on their energy savings and user
satisfaction levels during a 5-month field study within a university
office space.

• An analysis for a building-wide implementation of the proposed
system and deployment considerations were discussed to high-
light the system’s feasibility and financial viability for real-world
implementations.

• A comprehensive review of existing plug load management ap-
proaches was provided, categorised based on different load mon-
itoring and control strategies while highlighting the limitations of
existing systems.

. Literature review

This section provides a comprehensive review of existing plug load
anagement systems based on different energy monitoring approaches

nd control strategies proposed by past studies.

.1. Energy monitoring in plug load management systems

Energy monitoring is one of the core features found in existing plug
oad management systems that enable users to monitor their plug load
nergy consumption patterns over time.

.1.1. Load monitoring approaches
There are two different approaches to perform plug load energy

onitoring: non-intrusive load monitoring (NILM) and intrusive load
onitoring (ILM) approaches [8].

NILM approaches usually require installing a smart power meter at
he building’s main electrical panels to capture the building or floor’s
ggregated power consumption information. The recorded data is sub-
equently passed through a load disaggregation algorithm to identify
he individual plug loads currently operating within the building [9].

hile this approach has a low setup cost and does not intrude upon the
ccupants during data collection, the performance of the load disaggre-
ation algorithm is affected by the number of operational plug loads in
he building, where a large number of plug loads can lead to significant
2

ignal distortion and a complex energy signature [10]. Furthermore,
NILM approaches also perform poorly when identifying plug loads that
do not consume a significant amount of power [11]. Therefore the use
of NILM approaches in office buildings are severely limited due to the
large number of plug loads (i.e., laptops and monitors) that are typically
found operating during office working hours.

On the other hand, ILM approaches involve installing smart power
plugs at each electrical socket in the building to obtain a high-resolution
view of each plug load’s power consumption information by eliminating
the load disaggregation step. On top of the increased resolution, the
declining sensor cost and improved software integration support with
existing smart home systems have led to the rising popularity of ILM
approaches and various applications related to the users’ plug load
usage patterns [12,13].

2.1.2. Plug load management through energy monitoring
By tracking the users’ plug load usage patterns through the various

load monitoring approaches highlighted in Section 2.1.1, the informa-
tion can be processed and presented to the users to encourage them
to adopt positive energy management habits. Some examples of these
behavioural intervention strategies include using an interactive visual
display to provide eco-feedback about the users’ historical energy con-
sumption and inform them of their environmental impacts [14]. Other
information-driven strategies, albeit more intrusive, include sending
out scheduled email reminders to prompt users to switch off their plug
loads at the end of the day as well as providing educational tips on how
to reduce their current energy consumption [15]. Some studies have
also assessed the effectiveness of different incentives, such as monetary
and social rewards, in encouraging workers to adopt sustainable energy
management practices in the workplace [16]. Apart from these strate-
gies, other innovative solutions include using gamification approaches
to increase the users’ knowledge and awareness of different energy
conservation strategies within the workplace [17]. Some studies have
also attempted to engage users in friendly competition as they form
teams within the organisation and compete to complete the highest
number of resource-saving actions [18].

However, these strategies’ long-term effectiveness is highly uncer-
tain as they are heavily dependent on successfully influencing the
users to voluntarily change their existing behaviours and begin actively
managing their plug loads. This limitation is especially relevant in com-
mercial workplaces where users are often not responsible for paying
for their electricity usage and are hence less motivated to reduce their
current energy consumption, unlike in residential spaces [19].

2.2. Energy control in PLMS

On top of energy monitoring, the recent advancements in sensing
and control technologies made it possible for users to control their
plug loads remotely, by setting operating schedules or automating their
plug loads based on their presence information. The following section
provides more details of these control strategies.

2.2.1. Remote and schedule-based controls
Some of the standard control features found in most plug load

management systems include remote control and schedule-based con-
trols. Remote control allows users to control their plug loads remotely
through a digital interface while they are not physically present at their
desks, while schedule-based controls allow users to set operating sched-
ules for their devices to reduce standby power consumption during
non-active periods.

An example of such a system was proposed by Yun et al. which
comes equipped with remote and schedule-based controls and users
also are provided with eco-feedback about their energy usage. Based
on a 27-week field study with 80 office workers, the study concluded
that the inclusion of schedule-based control on top of eco-feedback can
lead to energy savings up to 38%, which is greater than the inclusion
of remote control (i.e., 25%) and a purely eco-feedback-based approach
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(i.e., 13%) [20]. Tsai et al. also proposed an intelligent control system
that uses wireless smart sockets and IoT technology to automatically
detect and switch off unused plug loads to reduce their standby power
consumption [21]. Lastly, Metzger et al. evaluated the effectiveness of
schedule-based controls by allowing users to set operating schedules
for two buildings to achieve energy savings between 13%–54% and
14%–27% for laptops and monitors, respectively [22].

2.2.2. Occupancy-driven controls
Apart from remote and schedule-based controls, a small number of

studies have also proposed occupancy-driven plug load management
systems that use various sensing and IoT technologies to infer the
building’s occupancy levels and automate the users’ plug loads based
on their presence information. With the plethora of technologies capa-
ble of collecting user location data with varying degrees of accuracy
and resolution [23], existing plug load management systems generally
adopt less advanced technologies such as motion sensors based on
passive infrared, ultrasonic or microwave technologies to detect the
users’ presence at their desks. For instance, Park et al. proposed a
smart plug load management system that uses motion-based occupancy
sensors and predefined schedules to control the power supply to differ-
ent appliances connected to a power strip. The proposed system was
reportedly able to significantly reduce the power consumption of the
appliances evaluated based on a five-day field study [24]. Another
study conducted by NREL evaluated three different approaches for
reducing plug load energy consumption in a commercial building.
The approaches evaluated includes an automated energy management
system that switches off plug loads in an area when it is unoccupied
for a certain period, inciting behavioural change using information
feedback and selective messaging, and encouraging competition be-
tween different office workers. In the end, the occupancy-driven energy
management system was able to achieve a 21% energy reduction when
compared to the baseline strategy [25]. A study conducted by Zhang
et al. also concluded that a system combining schedule-based and
occupancy-driven controls could result in annual savings between 0.42–
0.74 kWh/sqft after evaluating different integrated designs in small
and large office buildings [26]. The study further concluded that by
maximising the occupancy sensors’ utility, it is possible to increase
energy savings by an additional 30%.

2.2.3. Limitations
Despite the different energy monitoring and control strategies pro-

posed in the earlier sections, the main limitations of existing plug load
management systems can be attributed to issues related to deployment
viability, low energy savings reported, and user resistance towards the
acceptance of such systems. This is especially true in the context of
commercial spaces as occupants are often not responsible for their
energy usage. A recent field study involving the deployment of a plug
load management system, equipped with remote and schedule-based
controls, reported low energy savings between 11%–18% due to poor
system adoption [27], thereby severely limiting the cost-effectiveness
and financial viability of the overall system [28]. Another study evalu-
ating different plug load management strategies also reported frequent
occurrences of sensor detection errors when using passive infrared
sensors to detect the users’ occupancy within the room, leading to user
frustration when the plug loads are erroneously switched off [29].

These limitations highlight the need for more intelligent systems
that can reduce both the energy consumption of plug loads and user
burden while maintaining an optimal balance between plug load au-
tomation and user control. In this study, we aimed to bridge this gap
by proposing Plug-Mate, a novel IoT-based occupancy-driven plug load
management system. Our proposed system is capable of automating the
users’ plug loads based on (1) their high-resolution occupancy infor-
mation captured through an non-intrusive indoor localisation system,
(2) plug load type information inferred through an advanced plug
load identification feature, and (3) their diverse control preferences for
each plug load type through a personalised user interface, capable of
visualising the users’ historical energy consumption.
3

Fig. 1. The IoT framework for occupancy-driven smart energy management systems,
on which Plug-Mate was based. The framework consists of four interacting layers
(i.e., Sensing layer, Network layer, Data Processing layer, and Application layer) that
perform different functions to enable the automation of different plug loads based on
the users’ occupancy information and other sensing data.

3. Plug-Mate system architecture

This section covers a detailed description of our proposed system
architecture, starting with a general overview of the IoT framework that
the system is designed based on, followed by a detailed description of
each component and subsystem within Plug-Mate.

3.1. IoT framework

Plug-Mate is based on a custom 4-layered IoT framework for
occupancy-driven smart energy management systems, which consists
of a Sensing layer, a Network layer, a Data Processing layer, and an
Application layer, as depicted in Fig. 1.

Sensing Layer: The Sensing Layer comprises different sensors to
collect information about the occupants and the building’s current
state to inform Plug-Mate’s automation logic. These sensors include
occupancy sensors to capture the wireless signals emitted by the oc-
cupants’ smartphone devices and smart plugs to support real-time
energy monitoring of the occupants’ plug loads. In the case that the
system is extended to other building systems (i.e., lighting and HVAC
systems), additional sensors such as indoor environmental sensors and
illuminance sensors can be deployed within this layer to support the
system’s control logic.

Network Layer: The Network Layer serves as a data bridge between
the sensors in the Sensing Layer and the sensor processing and control
modules in the Data Processing Layer. More specifically, the Network
Layer facilitates the transmission of sensing data via various wireless
communication protocols to the system servers running the sensor pro-
cessing and control logic, before transmitting the control instructions
to the actuators controlling the plug loads’ operation.

Data Processing Layer: The Data Processing Layer is responsible
for processing the sensing data captured by the sensors deployed in
the Sensing Layer and generating the appropriate control instructions
via the Control Module to optimise the operation of each plug load
and reduce its energy wastage. In the case of Plug-Mate, multiple
sensor processing modules were also developed to infer the occupants’
high-resolution location and plug load type information based on the
sensor data captured in the Sensing Layer to allow the system to make
advanced control decisions based on these inputs.

Application Layer: Finally, the Application Layer is a hardware
layer that encompasses the various building systems, including plug
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Fig. 2. System architecture of Plug-Mate and the system interactions between different modules and sensor networks.
loads, HVAC systems, and lighting systems, by integrating their existing
controls with the system’s actuators. In the case of Plug-Mate, this layer
consists of the personal devices used exclusively by a single individual
or shared devices that are used by multiple individuals throughout the
day.

The following section provides a detailed description of the ma-
jor components and subsystems within Plug-Mate based on the IoT
framework described in this section.

3.2. System description and components

Plug-Mate comprises a system of interconnected modules and sensor
networks to infer real-time information about the users’ high-resolution
occupancy information, plug load type, and usage preferences to auto-
mate their plug loads and reduce energy consumption. The remainder
of this section provides a detailed description of each component within
our system, as depicted in Fig. 2.

3.2.1. Energy monitoring & control sensor network
The Energy Monitoring & Control Sensor Network comprises of an

interconnected network of smart plugs that records the users’ real-time
plug load power consumption information, which is transmitted to a
gateway device using the Z-wave communication protocol. Through the
gateway device, the power consumption information is subsequently
transmitted to the system’s database for storage via the Wi-Fi com-
munication protocol. Each smart plug is configured to record the plug
load’s power consumption once every minute (i.e., 1/60 Hz) to reduce
network latency and data storage cost. Moreover, each smart plug is
equipped with an inbuilt actuator that enables it to be programmat-
ically switched ON and OFF through an API call, which is triggered
based on Plug-Mate’s automation logic.
4

The benefit of adopting the Z-wave communication protocol is that
it utilises a mesh network of smart plugs to relay the information
collected by each sensor, thereby allowing the data to be transmitted
over longer distances beyond the original range of the gateway device.
This feature is especially useful in a built environment where the net-
work range is often limited by the obstacles and wall partitions found
within the building. Moreover, the Z-wave communication protocol is
an energy-efficient and practical alternative to other wireless protocols
such as Wi-Fi and ZigBee, making it a popular choice in many existing
smart home and office automation systems [30].

3.2.2. BLE Occupancy Sensor Network
The BLE Occupancy Sensor Network consists of a system of BLE

sensors built using Raspberry Pi model Bs, which are programmed to
detect the users’ proximity to each sensor by periodically scanning
for the users’ Bluetooth-enabled smartphone devices based on their
devices’ MAC addresses. When a user is within the scanning range
of one of our sensors, the BLE wireless signals emitted by the user’s
smartphone device will be captured by a nearby sensor and processed
to generate a received signal strength indicator (RSSI) value.

The magnitude of the RSSI value provides a indication of the rela-
tive quality of the received signal from the users’ device. By combining
multiple RSSI values captured by different sensors deployed within the
area and passing them through advanced machine learning algorithms,
it is possible to infer the user’s location within the area in real-time.
The details of this inference process is covered in greater detail in the
following section when describing the Occupancy Detection module.
This indoor localisation approach is considered to be more scalable
and less intrusive than existing approaches in the literature as users are
not required to install a mobile application or carry around wearable
sensors to accurately identify their location within the building [31].
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By combining the generated RSSI value with the device’s MAC
address and timestamp information, this record is transmitted to the
Database for storage in real-time using the BLE sensors’ inbuilt wireless
Wi-Fi adapter.

3.2.3. Database
Our proposed system comes equipped with a commercial-grade

PostgreSQL cloud database hosted by Heroku to store information
about the users, their assigned plug loads, and the sensor data captured
by the various sensor networks for subsequent retrieval. Some examples
of the information stored include the users’ smartphone MAC addresses,
the unique IDs of the smart plugs assigned to each user, the RSSI values
captured by the BLE beacons in the BLE Occupancy Sensor Network,
and the power consumption information captured by the smart plugs
in the Energy Monitoring & Control Sensor Network. Each user is also
assigned a unique user ID, which serves as a primary key connecting
the different SQL tables together.

3.2.4. Web-based user interface
A personalised web-based user interface is also integrated within

Plug-Mate to allow users to customise the system’s automated controls
via an intuitive control interface and inform users of their historical
energy consumption through an interactive energy dashboard. The user
interface is developed using the Python-based Django web framework,
with the users’ energy consumption information visualised using the
Dash Plotly library and the control interface implemented using the
React.JS library.

Control Interface The control interface allowed users to man-
age the automation settings for each plug load type through three
different control features supported by the Plug-Mate system. These
control features include remote control, presence-based control, and
schedule-based control (refer to Fig. 3).

• Remote Control: The remote control feature enables users to
switch ON/OFF their plug loads remotely by toggling the corre-
sponding switches on the control interface. This control feature
is especially useful for users who constantly forget to switch off
their plug loads when leaving their desks for long periods, such
as at the end of the workday.

• Presence-based Control: Under presence-based controls, users
can set specific time intervals for each plug load to be switched
off after the users have left their desks. The users’ presence
information is inferred through the Occupancy Detection module
by processing the sensor data captured by the BLE occupancy
sensors.

• Schedule-based Control: The schedule-based control allow users
to set operating schedules for each plug load type based on
different days of the week. After an operating schedule has been
assigned to a particular plug load, it is automatically switched
ON at the start of the schedule and switched OFF at the end of
the schedule. Therefore, users can still switch ON/OFF their plug
loads using other control features during or beyond the scheduled
operating periods.

It should be highlighted that the presence-based control and
schedule-based control only require a one-time setup process, following
which Plug-Mate can proceed to automate the users’ plug loads based
on their preferred control settings. Furthermore, when multiple control
features are enabled simultaneously for the same plug load type, the
control hierarchy obeys the following order: remote control > presence-
based control > schedule-based control. This order ensures that the
users’ plug loads are not scheduled to be switched off when they are
still present at their desks, and users can overwrite the system’s controls
anytime by using the remote control feature.

Energy Dashboard The energy dashboard allows users to learn
more information about their consumption patterns by providing in-
teractive visualisations of the users’ historical energy consumption for
5

Fig. 3. Plug-Mate Control Interface.

different plug load types, cumulative energy and cost savings based on
past consumption, and includes an achievement system where users are
awarded points for adopting positive plug load management habits.

3.2.5. Modules
Within the Modules component, the power consumption data

recorded by the smart plugs in the Energy Monitoring & Control
Network and the RSSI values recorded by the BLE occupancy sensors
are processed to identify the occupants’ plug load types and their
real-time location within the building, respectively. By combining this
information with the users’ preferred control settings in the Control
Interface, the most appropriate control instructions are determined
based on a series of advanced control rules, where the users’ plug
loads will be switched ON/OFF accordingly. This process is executed
by three interconnected modules: the Plug Load Identification module,
the Occupant Detection module, and the Control module.

Plug Load Identification Module The plug load identification
module’s function is to infer the users’ plug load type information based
on the real-time power consumption information captured by the smart
plugs assigned to each user.

The plug load identification process is achieved using a multi-staged
approach (refer to Fig. 4) by first identifying the periods where the
plug load is in the active state for a prolonged period (i.e., active
period). An active period is identified by first differentiating when the
plug load is in the active state and inactive state by setting a power
threshold of 2.5 W. This threshold is set based on our observation
that the standby power consumption of most plug loads does not
exceed 2.3 W. Given that certain plug loads may fluctuate between
the active state and inactive state while in use, a threshold duration of
10 min is set such that the plug load must be in the inactive state for
this minimum duration before the active period is considered to have
ended. Otherwise, they will be considered random power fluctuations
within an active period.

After identifying the plug load’s active periods, a feature extrac-
tion step is performed within each active period to extract a set of
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Fig. 4. The data processing pipeline used within the Plug Load Identification module
to process the users’ power consumption information and identify their corresponding
plug load types.

time-series features based on a predefined time window 𝑇 . These fea-
tures include the plug load’s instantaneous power 𝑝𝑡, maximum power
recorded during time window 𝑇 , 𝑝𝑚𝑎𝑥, minimum power recorded during
time window 𝑇 , 𝑝𝑚𝑖𝑛, average power during time window 𝑇 , 𝑝𝑎𝑣𝑒, power
variance during time window 𝑇 , 𝑝𝑣𝑎𝑟, average power consumption
when the plug load is in the active state during time window 𝑇 ,
𝑝𝑎𝑣𝑒𝑎𝑐𝑡𝑖𝑣𝑒, average peak power during time window 𝑇 , 𝑝𝑎𝑣𝑒𝑝𝑒𝑎𝑘, absolute
power difference from the previous power value at time 𝑡, 𝑑𝑡, the
fraction of time where the plug load is in the active state during time
window T (i.e., duty cycle), and the corresponding bin sizes and the
average time interval between the energy delta values of each bin in
an 8-bin histogram (i.e., histogram features). The equations for some
of these time-series features are provided below.

𝑝𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑝𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑇 (1)

𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑝𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑇 (2)

𝑝𝑎𝑣𝑒 =
∑

𝑖∈𝑇 𝑝𝑖
∣ 𝑇 ∣

(3)

𝑝𝑣𝑎𝑟 =
∑

𝑖∈𝑇 (𝑝𝑖 − 𝑝𝑎𝑣𝑒)2

∣ 𝑇 ∣
(4)

𝑝𝑎𝑣𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =

∑

𝑖∈𝑇 , 𝑝𝑖>2.5𝑊 𝑝𝑖
∑

𝑖∈𝑇 , 𝑝𝑖>2.5𝑊 1
(5)

𝑝𝑎𝑣𝑒𝑝𝑒𝑎𝑘 =
∑

𝑗∈𝑆 𝑚𝑎𝑥{𝑝𝑘}, 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑠𝑗
∑

𝑗∈𝑆 1
(6)

𝑑𝑡 = ∣ 𝑝𝑡 − 𝑝𝑡−1 ∣ (7)

The length of the time window used during feature extraction is
also defined using a dynamic time window strategy by first setting it
at a minimum length of 5 min, 𝑇𝑚𝑖𝑛. As the active period continues
to extend, the length of time window 𝑇 will also increase accordingly
to utilise the maximum amount of historical data available for feature
extraction and ensure high classification accuracy.

After extracting the relevant time-series features following the pro-
cessing steps described above, they are subsequently passed into an
ensemble machine learning model based on the Bagging algorithm to
infer the plug load type information. A comprehensive evaluation of the
plug load identification model has been conducted in a previous study
using different classification algorithms, plug load types, and parameter
settings to identify the best performing model to be used within the
Plug-Mate [8]. Finally, the inferred plug load type information is stored
in the Database for subsequent retrieval.

Occupancy Detection Module The Occupancy Detection module
is responsible for processing the RSSI values captured by the BLE
6

occupancy sensors and using the processed RSSI values to infer the
users’ location within the building in real-time through a machine
learning model.

The process begins by extracting the RSSI values from the Database
based on the user’s device MAC address and sorting them based on
the timestamp information tagged to each RSSI value. Following this,
each entry is transformed into an RSSI tuple ⟨𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑛, 𝑡⟩, where
each item in the tuple, 𝑥𝑖, 𝑖 = 1,… , 𝑛, corresponds to the RSSI values
recorded by a particular BLE occupancy sensor in the area, followed
by the timestamp information, 𝑡. However, due to the unsynchronised
nature of the sensors’ scanning patterns, this can result in the presence
of missing values in the RSSI tuple for certain sensors. This issue of
missing values in the RSSI tuple is addressed by performing a forward
fill of the corresponding sensors’ last recorded RSSI values if it is
within the BLE sensors’ scanning window of 1 min. Otherwise, an
arbitrarily large RSSI value is assigned for that particular BLE sensor
to signify that the user is outside the sensor’s scanning region. This
imputation strategy is found to be less computationally intensive and
performs relatively well compared to more advanced imputation algo-
rithms proposed in the literature [32] as users do not tend to change
their locations frequently throughout the day. This observed behaviour
allows each sensor’s last recorded RSSI value to remain valid for a short
time window.

Based on the processing and imputation steps described above,
the resulting RSSI tuple is passed into a machine learning model
(i.e., occupancy detection model) to infer the users’ zone-level location
within the building in real-time. The model follows an ensemble 1-vs-all
architecture where a Gradient Boosting binary classifier is trained for
each zone, 𝑧, to output a probability, 𝑃𝑧,𝑢, of the user 𝑢’s presence within
the zone based on an RSSI tuple of the nearby sensors. By comparing
each classifier’s probabilistic output, 𝑃𝑧,𝑢, the zone with the highest
probability will be selected as the user 𝑢’s inferred location, 𝑙𝑢 (refer
to Eqs. (8) and (9)).

𝑃𝑧,𝑢 = 𝑓𝑧(⟨𝑥1,𝑢, 𝑥2,𝑢, 𝑥3,𝑢,… , 𝑥𝑛,𝑢⟩) (8)

𝑙𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃𝑧,𝑢, 𝑧 ∈ 1, 2,… , 𝑍) (9)

A comprehensive evaluation of the occupancy detection model was
conducted in a previous study between different model architectures
using supervised and semi-supervised learning approaches to identify
the best model architecture to be used within Plug-Mate [33]. Based
on the evaluation conducted, the occupancy detection model was able
to report an average localisation accuracy of 91% when evaluated in
two different office spaces.

Control Module Based on the users’ plug load type and presence
information, the control module is responsible for automating the users’
plug loads following a set of control rules depending on the users’
arrival or departure from their desks.

During an arrival event, the Occupant Detection module first detects
the user’s arrival and triggers an arrival event sequence within the
Control module by passing the user’s unique ID. The Control module
then retrieves the ID information of the smart plugs assigned to the
user from the Database using the user’s ID information. Following this,
a series of API calls are constructed based on the list of smart plug IDs
retrieved before sending the control instructions to the corresponding
smart plugs via the gateway device to instruct them to switch ON the
users’ plug loads in real-time (refer to Fig. 5).

During a departure event, the Occupant Detection module first
detects the user’s departure and triggers a departure event sequence
within the Control module by passing the user’s unique ID and depar-
ture time. The Control module then retrieves the ID information of the
user’s smart plugs that are currently active, together with their plug
load type information using the user’s ID information. Following this,
the Control module then retrieves the switch-off times for each plug
load type from the Database, which was predefined by the user via the
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Fig. 5. Sequence diagram of an arrival event.

Fig. 6. Sequence diagram of a departure event.

Control Interface. By keeping track of the user’s departure time and the
assigned switch-off times for each plug load type, the plug loads that
are active for periods longer than their assigned switch-off times will
be switched OFF by performing an API call to their respective smart
plugs (refer to Fig. 6).

In the case of operation-critical plug loads, such as desktops, that
follow a specific switch-off procedure, a command-line shutdown ap-
plication was also set up on the users’ devices to allow the Plug-Mate
system to remotely execute a shutdown command on their devices
based on the same control logic described above to avoid damaging
the plug loads.

4. Field study

4.1. Setup

Based on the system architecture described in Fig. 2, Plug-Mate
was implemented and evaluated during a field study, which lasted
over a period of 5 months and involved 10 participants in a medium-
size office. The study area selected for this field study is a university
office space that spans over 338 m2 and houses over 43 researchers,
administrative staff, and faculty members. The layout of the study
area contains a mixture of single private offices, open and closed
office spaces, as well as a meeting room, printer area, and pantry
as shown in Fig. 7. Before the commencement of the study, the BLE
occupancy sensors and smart plugs were installed at the participants’
desks, where the setup of the various sensors is shown in Fig. 8. The
participants’ login credentials into the web-based user interface were
also prepared in advance and distributed to the participants, where they
were provided a short hands-on tutorial on how to use the user interface
and its various features.

The list of plug loads considered in this field study includes 10 mon-
itors, 10 laptops, 3 desktops, and 7 miscellaneous plug loads comprising
2 task lamps, a coffee machine, and 4 chargers. These plug loads were
considered in this field study as they are the most common plug load
types typically found in a standard office space and can contribute up
to 70% of the total plug load profile in an office building. [34].
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4.2. Control strategies

Throughout the field study, a total of six control strategies were
evaluated involving the use of different control features, including
complete manual control (CS1), pre-defined schedule-based controls
(CS2 and CS3), occupancy-driven controls (CS4 and CS5), and hybrid
controls (CS6). Each control strategy was evaluated over 3 weeks, and
a detailed description of each control strategy is provided as follows:

CS1 Baseline: In the baseline strategy, all participants have com-
plete manual control over their plug loads with no automation features
in place.

CS2 Pre-defined operating schedules: The second control strategy
involves introducing pre-defined operating schedules for the partici-
pants’ plug loads. More specifically, the Control module is configured to
retrieve the smart plug IDs assigned to all system users at 7 PM every
day and perform the necessary API calls using the smart plug IDs to
switch OFF all devices simultaneously (refer to Fig. 9).

CS3 Pre-defined operating schedules with occupancy profiles:
The third control strategy extends upon the second control strategy
by introducing pre-defined operating schedules to manage the users’
plug loads and accounts for the differences in the users’ occupancy
patterns by assigning different shutoff timings based on their occupancy
profiles. By referencing a previous study examining the occupancy
patterns of 46 participants in a similar study area, the authors identified
three distinct occupancy profiles, namely Regulars, Mobile Workers,
and Flexi-timers [33]. Regulars follow a regular office worker’s daily
schedule by coming to work around 9–10 AM, taking their lunch
between 12–1.30 PM, and leaving work for the day after 6 PM. Mobile
Workers tend to follow a similar first arrival and last departure time
as Regulars but are less likely to be found present at their desks
during office hours due to their mobile nature. Finally, Flexi-timers
tend to follow non-regular office hours by having a much later first
arrival and last departure time than the other two profiles. Of the
10 participants involved in the study, 4 were identified as Regulars,
while the remaining 6 were categorised as Flexi-timers based on their
occupancy patterns collected during the first three weeks of the study
(i.e., during CS1). Based on this categorisation, this control strategy
involves configuring the Control module to retrieve the smart plug IDs
assigned to the Regulars at 7 PM and performing the necessary API
calls using the smart plug IDs retrieved to switch OFF their devices
simultaneously (refer to Fig. 10). Similarly, the Control module is
configured to switch off the devices belonging to Flexi-timers at 1 AM
every day using the same control sequence described above.

CS4 Occupancy-driven controls: The fourth control strategy intro-
duces occupancy-driven controls where the participants’ plug loads are
configured to be switched off 5 min after they are detected to have left
their desks by the Occupant Detection module. The control sequence is
based on a simplified version of Fig. 6 where the shutoff time for all
plug loads is set at 5 min, regardless of their type and user preferences
(refer to Fig. 11).

CS5 Occupancy-driven controls with plug load identification:
The fifth control strategy extends upon the fourth control strategy
by combining occupancy-driven controls with plug load identification
capabilities. More specifically, the Plug Load Identification module
is activated to infer the users’ plug load type information based on
their energy signatures in real-time. By combining the users’ departure
time with their plug load type information, each device is assigned a
different shutoff time based on its plug load type and criticality level.
The shutoff times for operation-critical devices such as laptops and
desktops are assigned a longer shutoff time of 15 min and 30 min,
respectively, to avoid any accidental loss of work when participants
leave their desks for short periods. On the other hand, non-critical plug
loads such as monitors and other miscellaneous devices are assigned a
shorter shutoff time of 10 min and 5 min, respectively. The control
sequence is based on a slightly simpler version of Fig. 6 where the
shutoff time does not account for user preferences (refer to Fig. 12).
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Fig. 7. Layout of the study area showing the locations of the various BLE occupancy sensors (18), gateway device (1), and smart plugs (30).
Fig. 8. Sensor setup at a participant’s desk.

Fig. 9. Sequence diagram of Control Strategy 2.

Fig. 10. Sequence diagram of Control Strategy 3.
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Fig. 11. Sequence diagram of Control Strategy 4.

CS6 Occupancy-driven controls with plug load identification
and user preferences: The last control strategy involved the full
activation of Plug-Mate’s capabilities, where the users’ plug loads are
automated based on their presence information detected via the Oc-
cupant Detection module, plug load type information inferred via the
Plug Load Identification module, and user-assigned shutoff timings
provided via the User Interface. The complete control sequence has
already been described above and depicted in Fig. 6. Users can also
combine occupancy-driven controls with other control features such as
remote control and schedule-based control to develop hybrid control
strategies for specific plug load types to suit their current plug load
usage preferences.

5. Results

5.1. Impact of control strategies based on energy savings and user satisfac-
tion

Each control strategy is evaluated based on the energy savings
that is achieved relative to the baseline strategy (i.e., CS1) and the
participants’ overall satisfaction levels.

The participants’ user satisfaction levels are evaluated based on
three evaluation metrics adapted from various technology adoption
studies [35–37]: convenience, usefulness, and user acceptance. Con-
venience refers to how easily the participants can incorporate the
prototype system in their daily routines to help manage their plug load
energy consumption. Usefulness is defined as how well the prototype
system can help the participants in managing their plug load energy
consumption. Lastly, user acceptance refers to how likely the partici-
pants would accept using the prototype system to manage their plug
load energy consumption in the long run. After the study participants
have experienced each control scenario for three weeks, a short inter-
view was conducted at the end of each control scenario to learn more
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Table 1
Energy performance of each plug load type based on the six control strategies evaluated over 18 weeks.
The energy savings achieved in each control strategy is expressed as a percentage of the baseline strategy.
‘‘Others’’ refer to all miscellaneous loads including coffee machines, task lamps, and chargers.

Plug load
types

Baseline Pre-defined schedules Occupancy-driven controls

S1
(kWh)

S2
(kWh)

S3
(kWh)

S4
(kWh)

S5
(kWh)

S6
(kWh)

Monitor
(10)

67.1 44.36
(33.9%)

36.81
(45.2%)

28.29
(57.8%)

28.94
(56.9%)

28.39
(57.7%)

Laptop
(10)

111.56 66.09
(40.8%)

55.45
(50.3%)

45.94
(58.8%)

47.50
(57.4%)

46.12
(58.6%)

Desktop
(3)

154.02 81.11
(47.3%)

69.62
(54.8%)

56.83
(63.1%)

60.67
(60.6%)

84.72
(58.6%)

Others
(7)

12.23 7.76
(36.6%)

7.18
(41.3%)

6.43
(47.4%)

6.42
(47.5%)

7.39
(39.6%)

Total
(30)

344.97 199.32
(42.2%)

169.06
(51.0%)

137.49
(60.1%)

143.53
(58.4%)

166.62
(51.7%)
Table 2
Mean and standard deviation (SD) of user satisfaction levels for the six control strategies rated based on a maximum score
of 5.

User
satisfaction metrics

Pre-defined schedules Occupancy-driven controls

S2 S3 S4 S5 S6

Convenience Mean: 3.2
SD: 1.1

Mean: 3.6
SD: 1.1

Mean: 4.6
SD: 0.7

Mean: 4.7
SD: 0.7

Mean: 4.7
SD: 0.6

Usefulness Mean: 3.3
SD: 0.9

Mean: 3.9
SD: 1.3

Mean: 4.3
SD: 0.7

Mean: 4.8
SD: 0.7

Mean: 4.8
SD: 0.6

User
acceptance

Mean: 2.8
SD: 0.9

Mean: 3.5
SD: 1.1

Mean: 3.8
SD: 1.0

Mean: 4.5
SD: 0.5

Mean: 4.8
SD: 0.7

Total Mean: 3.1
SD: 1.0

Mean: 3.7
SD: 1.2

Mean: 4.2
SD: 0.8

Mean: 4.6
SD: 0.8

Mean: 4.7
SD: 0.7
Fig. 12. Sequence diagram of Control Strategy 5.

about their experiences. Participants were also asked to rate each con-
trol scenario based on the three evaluation metrics highlighted above
following a 5-point Likert scale to quantify their experiences. In this
case, the lowest score of 1 indicates that the system is not convenient,
useful or acceptable under a particular control scenario, while the
highest score of 5 indicates that the system is very convenient, useful
or acceptable. Based on the responses provided by the participants for
each control scenario, the average rating and standard deviation for
each metric are calculated and provided in Table 2.

Based on the results reflected in Table 1, the introduction of pre-
defined operating schedules (i.e., CS2) achieved an average energy
saving of 42.2%. Furthermore, by customising the switch off schedules
for each participant based on their occupancy profiles (i.e., CS3), we
were able to further increase the resulting energy savings to 51.0% by
reducing the likelihood of accidentally switching off the participants’
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plug loads while they are still present at their desks. This occurrence not
only has a negative impact on the users’ satisfaction levels, as observed
when comparing between CS2 and CS3 in Table 2, but this also limits
the energy-saving potential of the system as participants are observed to
switch their plug loads back on immediately and may forget to switch
them off at the end of the day. Overall, CS3 demonstrated a better
system performance when compared with CS2, as it achieved higher
energy savings and user satisfaction levels for all three metrics.

Despite CS3’s better performance over CS2, the overall energy sav-
ings and user satisfaction levels achieved through setting pre-defined
operating schedules are still significantly lower when compared to
occupancy-based controls (i.e., CS4 and CS5). While CS3 attempted to
account for the users’ occupancy patterns by setting different switch off
schedules for different users, this is still unable to fully account for the
stochastic nature of the participants’ occupancy patterns, which may
differ each day, leading to user frustration when their plug loads are
switched off while they are still at their desks. Furthermore, partici-
pants found the pre-defined operating schedules to be very inconve-
nient as they have to be constantly aware of the switch off schedules
and save their work beforehand to prevent losing their progress.

On the other hand, participants found the occupancy-based controls
(i.e., CS4 and CS5) to be significantly more convenient and useful than
CS2 and CS3 as the system can react in real-time to the participants’
stochastic movement patterns and automate their plug loads accord-
ingly. The additional benefit of occupancy-based control is that it can
also reduce energy wastage both during office hours and after office
hours when participants leave their desk for extended periods, thereby
further boosting the amount of energy savings achieved (i.e., 58.4%–
60.1%). When comparing CS4 and CS5, we start to observe a trade-off
between energy savings and user satisfaction levels as CS4 achieved
a higher overall energy saving of 60.1% but obtained a lower user
satisfaction score of 4.2 out of 5.0. On the other hand, CS5 reported
a slightly lower energy saving of 58.4% but achieved a significantly
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higher user satisfaction score of 4.8 out of 5.0 when different switch
off intervals are assigned to each plug load type. The longer switch off
intervals assigned to critical plug loads such as laptops and desktops
were viewed to be especially useful by the participants as they do not
have to worry about losing their work when they leave their desks for
short periods without saving their work beforehand. This additional
feature, made possible through the plug load identification module,
resulted in a significant boost in the system’s user acceptance score
from 3.8 to 4.5 out of 5.0.

Lastly, CS6 can be considered an extension of all of the differ-
ent control scenarios involving the full system capacity of Plug-Mate.
Participants are given more control over the system’s automation by
allowing them to define different operating schedules for each plug
load type and set their corresponding switch off intervals after the
participants have left their desks. The inclusion of the user control
feature was well-received as it significantly boosted the system’s user
acceptance score from 4.5 to 4.8 out of 5.0 and resulted in an overall
user satisfaction score of 4.7 out of 5.0. This increase is observed
despite the slight drop in convenience score, from 4.8 to 4.7 out of
5.0, due to the initial setup process where participants are asked to
provide their preferred control settings through the user interface.
However, this is a one-time setup process, and its impact is unlikely to
be significant over the system’s entire lifespan. By referring to Table 1,
we also observe a drop in the system’s overall energy savings from
60.1% to 51.7% when users are provided with more control over the
system’s operation. A close examination of each plug load type’s energy
savings reveals that the drop in overall energy savings can be primarily
attributed to the increased energy consumption of desktops, followed
by other miscellaneous plug loads. In contrast, the energy savings for
monitors and laptops remained relatively consistent. This finding is
intuitive as some participants were observed to set very long switch
off intervals for their desktops as they are occasionally used to run
programs overnight, thereby limiting the amount of energy savings
achieved. Similarly, the same observation is found to be true for other
miscellaneous plug loads such as chargers. While there seems to be a
trade-off between energy savings and user satisfaction levels, CS6 is still
deemed to be the best control scenario as having a high user satisfaction
score is a strong indication that system users will continue engaging
with the system and achieve energy-savings over the lifespan of the
system.

6. Discussion

This section provides a detailed analysis of our proposed system
for a building-wide implementation and deployment feasibility for
large-scale setups.

6.1. Analysis for a building-wide implementation

We have performed a detailed analysis of our proposed system
by applying our field study results to the study building to assess a
building-wide implementation. All calculations listed below are repre-
sented in terms of US dollars.

Based on the energy consumption data collected during the field
study, we observed that the baseline energy consumption for 30 plug
loads was approximately 345 kWh over three weeks, which is equiva-
lent to 5980 kWh per year (52 weeks). In the case that our proposed
system is extended to other office spaces within the building, we can
calculate the overall building-wide energy savings by first estimating
the total number of plug loads that can be found in the building. This
is achieved by calculating the density of each plug load type in the
study area (i.e., 12.43 monitors/100 m2, 11.24 laptops/100 m2, 3.55
esktops/100 m2 and 4.14 others/100 m2.) and multiplying it by the
mount of office space in the building (i.e., 7634 m2). This calculation

adds up to a total of 949 monitors, 858 laptops, 271 desktops, and 316
other miscellaneous loads. Next, by multiplying the number of plug
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loads against their average energy consumption recorded during the
baseline period (i.e., S1), the building’s total plug load energy consump-
tion for 3 weeks sums up to 30,406.9 kWh. This is equivalent to 14.6%
of the building’s total energy consumption (207,965.89 kWh) during
the same period based on the utility data available. By applying the
energy savings achieved during the best control scenario (i.e., 51.7% in
CS6), this results in a 7.5% reduction in the building’s overall energy
consumption and an annual cost saving of USD$49,024 based on a
unit energy cost of USD$0.16/kWh [38,39], thereby demonstrating the
financial viability of our proposed system.

Considering the significant energy savings that are achievable
through our proposed Plug-Mate system, it is worth highlighting that
this result is calculated based on several assumptions in mind, which
may have an impact on its true value. The first assumption assumes
that the study participants’ plug load usage patterns are representative
of all occupants in the building and will remain consistent throughout
the other periods of the year. The second assumption also considers that
the study participants’ plug load ownership patterns are representative
of all occupants within the building.

Lastly, it should be noted that other plug loads such as printers, pro-
jectors, and personal heaters are also significant energy contributors,
which were not considered in this study. Therefore, a broader applica-
tion of Plug-Mate to other plug load types can potentially increase the
overall energy savings achieved further.

6.2. Feasibility of deployment

Apart from the system’s cost-effectiveness, it is also crucial to care-
fully consider and evaluate the feasibility of deploying the system
in a real-world setting based on the amount of time taken during
deployment and other deployment considerations.

During the field study, a total of 18 BLE occupancy sensors, 30 smart
plugs, and one gateway device was configured and deployed within the
study area (refer to Fig. 7), which was completed within half a working
day by two members of the research team. The sensors used in Plug-
Mate can be easily retrofitted within existing or new buildings without
the need for any electrical rewiring and do not result in any operational
downtime during deployment. This feature is crucial, especially when
targeting office spaces, as any operational downtime can result in a high
financial cost to the company. The system is also easily maintainable as
the users can physically remove any faculty sensors from the electrical
sockets to return their plug loads to full manual controls and avoid
any disruption to their work while they wait for the sensor to be
replaced. When the web-based user interface was first introduced to
the participants, they were provided with a 1 h hands-on tutorial on
using the system and its various features. In the case where the system
is deployed within the same study area with all existing occupants
(i.e., 43 occupants), it is estimated to take one working day as we will
be required to configure a total of 106 smart plugs, which corresponds
to the number of plug loads found within the study area. In contrast, the
number of BLE-based indoor localisation sensors and gateway devices
required is identical to the current setup as they are not dependent on
the number of occupants but rather the intended coverage of the study
area.

Several considerations should also be highlighted during the de-
ployment process when deciding the deployment location of the BLE
occupancy sensors and gateway device within the study area. In the
case of the BLE occupancy sensors, their deployment locations are
highly dependent on the available power sockets in the study area as
the sensors require a constant power source to operate. Furthermore,
given that the communication range of a Bluetooth signal is around 10–
15 m, the sensors should be placed at most 10–15 m apart from each
other and evenly distributed around the deployment area to ensure
complete signal coverage. The gateway device should also be deployed
in a location where it can connect directly to at least two or more smart

plugs while connecting to the rest of the smart plugs indirectly through



Building and Environment 223 (2022) 109472Z.D. Tekler et al.
the Z-wave mesh network. Therefore, to ensure that all smart plugs
can form a reliable connection with the gateway device, there should
also be an even distribution of smart plugs deployed throughout the
deployment area.

7. Conclusion

In this study, we proposed an IoT-based occupancy-driven smart
plug load management system, named Plug-Mate, to reduce energy
wastage in office spaces by automating the users’ plug loads based
on their high-resolution occupancy information, plug load type, and
plug load usage preferences. The users’ occupancy information is cap-
tured using an non-intrusive indoor localisation system that detects the
wireless signals emitted by the users’ Bluetooth-enabled smartphone
devices before using advanced machine learning models to identify the
users’ zone level location. A network of smart plugs is also deployed
to monitor the users’ real-time power consumption and infer their plug
load types based on their energy signatures. Lastly, a web-based user
interface is integrated within Plug-Mate to allow users to adjust the
system’s automated controls based on their preferred control settings
and view their historical consumption patterns. The system’s feasibility
is demonstrated during a 5-months field study in a university office
space with 10 participants and evaluated under six different control
scenarios. Each control scenario is designed to allow participants to
experience different degrees of automation and user control, where
it is assessed based on the amount of energy savings achieved rela-
tive to the baseline scenario (i.e., CS1) and user satisfaction levels.
By comparing the evaluation results among all control scenarios, we
were able to identify the control scenario (i.e., CS6) that provided an
optimal balance between automation and user control, which reported
an overall energy savings of 51.7% and the highest user satisfaction
score of 4.7 out of 5.0. Using the energy saving results obtained during
the field study, we have also provided a comprehensive analysis for a
building wide implementation. Based on our calculations, it is found
that the implementation of Plug-Mate is likely reduce the building’s
overall energy consumption by up to 7.5%. Finally, we highlighted
several considerations that should be accounted for during system
deployment, including the deployment location of the BLE occupancy
sensors, gateway device, and smart plugs to ensure that the system
performs reliably in the long run.

Given that the current version of the Plug-Mate system has been
evaluated on a specific set of personal devices (e.g., monitor, laptop,
desktop, and other miscellaneous devices), future field studies can
consider a broader range of plug loads that are commonly found in
commercial office spaces and are likely to benefit significantly from
such a system. Future system improvements can also extend the sys-
tem’s control beyond personal devices to shared or communal devices
such as printers, coffee machines, paper shredders, and projectors by
automating the operation of these devices based on the building’s
occupancy levels. Another possible future direction is extending this
system beyond the automation of plug loads to other building systems,
such as lighting and HVAC systems, to form a highly advanced and
unified occupancy-driven building control system.
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