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A B S T R A C T   

Building occupants are often assumed to follow deterministic schedules in building performance simulation 
programs. Therefore, to accurately capture the dynamic nature of the occupants’ movement patterns, researchers 
have proposed various indoor localisation technologies to infer occupancy information with varying degrees of 
accuracy and resolution. Among these technologies, the Bluetooth Low Energy (BLE) technology emerged as a 
popular alternative due to its availability in smartphone devices, as well as its low cost and power demand. In 
this study, we proposed a scalable and less intrusive occupancy detection method that leverages existing BLE 
technologies found in smartphone devices to perform zone-level occupancy localisation, without the need for a 
mobile application. The proposed method uses a network of BLE beacons for data collection before passing the 
pre-processed data into a machine learning model to infer the occupants’ zone-level location. A supervised 
ensemble model and a semi-supervised clustering model were proposed and evaluated to identify the best per-
forming model. The feasibility of the proposed method is demonstrated during a five-week case study involving 
two office spaces in an academic building in Singapore. While the supervised ensemble model produced the best 
performance in terms of accuracy and macro-average f1-score, the semi-supervised model was able to produce a 
reasonable performance while using a fraction of the training data (<4%) and time needed by the supervised 
model. By analysing the occupancy information obtained through the best performing model, we further iden-
tified a set of occupancy profiles to represent the diverse occupancy patterns observed in the study area.   

1. Introduction 

1.1. Background 

Occupant behaviour (OB) can be defined to encompass both occu-
pancy and the occupants’ interaction with different building systems 
such as HVAC systems, lighting systems, windows, blinds, shades, and 
plug load appliances [1]. While many researchers have agreed on the 
influence of OB on the building’s energy performance, the occupants’ 
dynamic behaviours are still inadequately represented in most building 
performance simulations (BPS); where they are often assumed to exhibit 
deterministic behaviours and follow regular schedules. In reality, oc-
cupants exhibit stochastic and diverse behaviours that contribute to a 
wide discrepancy between the simulated and actual building energy 
consumption. This discrepancy is also known as the energy performance 

gap. Therefore, researchers must first gain a better understanding of OB 
so that it can be properly represented and integrated into existing energy 
simulations in the form of OB-centric models. These models would serve 
as a useful decision-making tool for building planners and engineers 
when designing high-performance, low-energy office buildings. 

1.2. Occupancy in the built environment 

Given the definition provided above, OB can be more appropriately 
defined to be dependent on occupancy as the occupants’ interaction 
with different building components is first conditioned on their presence 
and movement patterns within the building. Thus, the first step towards 
understanding OB naturally involves the collection of detailed occu-
pancy information. This information is not only valuable in the devel-
opment of OB-driven models but also serves as a reliable indicator of 
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future demand which can be used in building control systems to improve 
energy efficiency and performance of commercial buildings [2]. Multi-
ple studies reported substantial energy savings when implementing such 
occupancy-driven control systems to desktops, HVAC, and lighting sys-
tems [3–5]. Given these potential use cases, researchers have continu-
ally proposed increasingly advanced occupancy detection systems that 
are aimed at obtaining high-resolution occupancy information. 

The resolution of the occupancy information can be categorised 
based on its spatial (i.e. building, floor, room), temporal (i.e. hours, 
minutes, seconds), and occupancy (i.e. presence, count, identity, and 
activities conducted) aspects [2,6]. Unsurprisingly, the complexity 
involved in data collection increases with the resolution of the data. As a 
result, these challenges have led to an alarming number of commercial 
buildings relying on simplistic occupancy schedules and profiles during 
operation, resulting in energy wastage [7]. 

While many occupancy studies have explored a wide range of sensing 
technologies, each technology comes with its own set of limitations 
including accuracy, implementation cost, inability for multiple occupant 
detection, privacy concerns, scalability, social acceptability, and time 
latency [8]. A detailed literature review of the various occupancy 
detection technologies has been provided in Section 2. Among the 
different technologies proposed, the BLE technology has recently 
emerged as a popular alternative due to its availability in most smart-
phone devices, as well as having a low cost, power demand, and data 
latency [9]. However, as recent studies continue to propose increasingly 
advanced occupancy detection systems that allow the collection of more 
fine-grained occupancy information, usually through the installation of 
a mobile application, this improvement often comes with an increased 
level of intrusiveness and power demand on the occupants’ devices. 

1.3. Study objective and contribution 

Given these trends, the main objective of this study is to propose a 
scalable and less intrusive occupancy detection method that leverages 
existing BLE technologies found in smartphone devices to perform zone- 
level occupant localisation, without the need for a mobile application. 
The proposed methodology involves the deployment of BLE beacons to 
collect the smartphone devices’ received signal strength indicator (RSSI) 
values before passing the pre-processed data into a machine learning 
model to infer the occupants’ zone-level location. Two different machine 
learning models were also proposed, based on a supervised ensemble 
approach as well as a semi-supervised clustering approach, and evalu-
ated against the ground truth to identify the best performing model. The 
feasibility of the proposed method is demonstrated during a five-week 
case study involving two office spaces in an academic building in 
Singapore. By using the best performing model to infer the occupancy 
information based on the RSSI values recorded during the study period, 
we further showed the value of the proposed method by conducting 
different types of analysis, which includes the identification of a set of 
occupancy profiles. These profiles were used to generalise the diverse 
occupancy patterns observed in the study areas. 

2. Related work 

2.1. Past occupancy detection systems 

Occupancy detection systems can be classified based on a terminal or 
non-terminal-based method [10]. In terminal-based methods, occupants 
are required to carry a wearable sensor or a smartphone device to track 
their movement patterns within the built environment. Some examples 
of such methods include the use of wireless technologies such as Radio 
Frequency Identification (RFID) [11,12], WIFI [13–17], and BLE tech-
nology [18–21]. While the implementation of occupancy detection 
systems based on these wireless technologies have allowed researchers 
to track the location of individual occupants at relatively high accu-
racies, the same implementation might intrude upon the occupants’ 

routine and impact their natural behaviours. This phenomenon is known 
as the Hawthorne effect as it describes a change in the occupants’ 
behaviour towards social acceptability due to their awareness of being 
studied [22]. 

On the other hand, non-terminal-based methods involve passively 
monitoring a particular area or space for the occupant’s presence 
without requiring the occupant to carry around or wear any sensing 
devices. Some examples of occupancy detection systems that adopted 
such methods include CO2-based detection systems [23–25], Passive 
Infrared (PIR) detection systems [26–29], Ultrasonic detection systems 
[26,30], sound detection systems [31], cameras [32,33], and smart 
power meters [34,35]. While some of these methods are less intrusive, 
the level of resolution and accuracy of the occupancy information ob-
tained are very limited. Some studies have attempted to address these 
limitations by combining non-terminal-based methods with 
terminal-based methods, resulting in a rise in infrastructure cost and 
data processing effort needed for sensor fusion. 

Table 1 provides a summary of the different methods used in past 
occupancy detection systems, categorised based on their terminal and 
non-terminal nature, as well as a brief description of their various 
benefits and limitations. 

2.2. Occupancy detection systems based on Bluetooth Low Energy 
technology 

Given the benefits and limitations that come with each method as 
summarised in Table 1, Ahmad et al. [8] concluded that the WIFI and 
BLE methods provided an optimal ratio between the cost of imple-
mentation and the quality of data obtained. While the WIFI method has 
been shown to be successful in detecting occupancy at the building or 
zone level [36], a higher resolution of occupancy information would 
require a significant amount of calibration to reduce the false-positive 
rates caused by a large number of WIFI-enabled devices that can be 
found in a densely populated area, such as an office space. Therefore, 
BLE technology recently emerged as a popular choice among researchers 
due to its ability to obtain high-resolution occupancy information and is 
widely embedded in most smartphone devices. Conte et al. [37] pro-
posed an accurate and power-efficient occupancy detection system, 
named BLUE-SENTINEL, which uses a mobile application that modifies 
the iBeacon protocol in iOS devices to collect the RSSI values of the 
nearest iBeacon at regular intervals. These RSSI values were passed 
through the K-nearest Neighbour and Decision Tree classification algo-
rithms to infer the occupants’ room-level location. The use of unique 
combinations of RSSI values to perform indoor localisation is commonly 
known as the Bluetooth fingerprinting approach. 

This work is followed up by an Android version of the application 
[18] where the localisation performance of the system was improved by 
passing the RSSI values of multiple neighbouring iBeacons into a Sup-
port Vector Machine. The authors also attempted to reduce the energy 
consumption of the mobile application by sending the RSSI values to a 
nearby BLE beacon via Bluetooth connection, which retransmits the 
information to an online server for further processing. Other than the 
use of mobile applications, Shen and Newsham [39] developed a com-
puter program to detect the occupant’s presence by scanning for his 
Bluetooth-enabled smartphone device when he is within range of his 
office computer. 

Occupancy detection systems have also been proposed in the context 
of emergency management where first responders will be able to utilise 
such systems to quickly pinpoint the location of victims in the building 
[40]. The proposed localisation system uses a combination of BLE bea-
cons, a mobile application, and a server, to collect the RSSI values for 
location inference using various machine learning approaches. Another 
application area is in the field of energy management where researchers 
[41,42] proposed a system of BLE beacons, smart energy plugs, and a 
mobile application to control the operation of certain appliances based 
on the occupant’s presence within the room. Some recent studies have 
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also proposed the integration of BLE-based occupancy detection systems 
with HVAC systems to enable occupancy-driven system controls based 
on high-resolution occupancy distribution information [43,44]. Finally, 
Tekler et al. [45] have proposed a sensor fusion approach to monitor the 
occupancy and plug load interaction patterns of occupants in an office 
environment by combining the use of BLE beacons and smart energy 

meters. 
However, for several of the BLE occupancy detection systems high-

lighted above, occupants are either required to install a mobile appli-
cation on their smartphone devices or download a custom program onto 
their personal plug loads in order to obtain individual-specific occu-
pancy information. This requirement negatively impacts the occupants’ 

Table 1 
Summary of past occupancy detection methods, categorised based on their terminal and non-terminal nature, a brief description of their benefits and limitations [8, 
38], as well as their highest spatial and occupant (Identity > Occupant Count > Binary Presence) resolution.  

Terminal-based Methods  

Benefits Limitations Highest 
Resolution 

RFID  � Cost effective  
� Commercially available  
� High detection accuracy and 

precision  

� Privacy concerns  
� Possible behaviour change due to the Hawthorne effect  
� Sensitive to external radio frequency devices and environmental conditions  
� Additional deployment cost  
� Occupants have to carry the sensor with them all the time 

Identity at zone 
level 

WIFI  � Power-efficient  
� Utilise existing communication 

infrastructure within building  
� High detection accuracy and 

precision  

� Inaccurate estimation of occupancy level due to ownership of multiple WIFI-enabled 
devices  

� Existence of different locations with same WIFI signatures  
� High false-positive detection rates in densely-populated areas  
� Occupants have to carry the sensor with them all the time 

Identity at zone 
level 

BLE  � Power-efficient  
� Cost effective  
� Commercially available  
� Widely available in many modern 

smartphone devices  
� High detection accuracy and 

precision  

� Privacy concerns  
� Possible behaviour change due to the Hawthorne effect  
� Occupants forgetting to turn on their smartphone’s Bluetooth mode  
� Additional deployment cost  
� Occupants have to carry the sensor with them all the time 

Identity at zone 
level 

Non-Terminal Methods  

Benefits Limitations Highest 
Resolution 

CO2-based detection 
systems  

� Part of the existing building 
infrastructure  

� Slow response times due to gradual gas dispersion  
� Sensitive to environmental and building conditions (e.g. wind speed, pressure 

difference, airflow rate, interzonal air transfer, envelope airtightness, and CO2 

concentration of air supply)  
� Unable to obtain spatial distribution of occupancy at the zone level  
� Relies on assumptions regarding occupants’ CO2 emissions  
� Need to be combined with other environmental sensors to improve accuracy 

Occupant count at 
zone level 

PIR detection 
systems  

� Ease of implementation  
� Cost effective  
� Power-efficient  

� Low reliability as it requires a clear line of sight and continuous motion for occupancy 
detection  

� Study area layout and sensor positioning also affects reliability  
� Only provides binary status of occupancy  
� Can be triggered by heat currents from HVAC systems  
� Need to be combined with other environmental sensors to improve accuracy 

Binary presence at 
zone level 

Ultrasonic detection 
systems  

� Ease of implementation  
� Cost effective  
� Do not require line of sight or 

continuous movement  

� Accuracy decreases for large spaces due to cross-talk between transducers  
� Slow response time  
� Prone to false presence detection due to environment (i.e. air turbulence from HVAC 

systems) and motion of inanimate objects  
� Only provides binary status of occupancy 

Binary presence at 
zone level 

Sound detection 
systems  

� Provide occupancy information on 
location and presence  

� Prone to false negatives when the occupant is not generating any sound  
� Prone to false positives due to sounds from non-human sources  
� Need to be combined with other environmental sensors to improve accuracy 

Binary presence at 
zone level 

Image detection 
systems (Cameras)  

� High resolution data (occupant 
count, location, and movement)  

� Readily available in security 
networks  

� Privacy concerns  
� Requires line of sight with minimal obstructions  
� Advanced signal processing and expensive hardware required  
� Data from security networks are often stored in standalone databases and rarely 

integrated into HVAC and lighting controls 

Occupant count at 
zone level 

Smart power meters  � Commercially available  
� Low privacy intrusion  

� Only provides binary status of occupancy  
� Unable to detect occupants if they are not using an appliance  
� Need to be combined with other environmental sensors to improve accuracy 

Binary presence at 
zone level 

Terminal þ Non-terminal Methods  

Benefits Limitations Highest 
Resolution 

Sensor Fusion  � Improves overall performance of 
occupancy estimation  

� Compensate for the limitations of 
each sensor  

� Challenges in processing the sensor data efficiently in real-time, leading to slow 
response  

� Often require additional infrastructure  
� Heterogeneous nature of data requires advanced data processing 

Identity at zone 
level  
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natural behaviour due to the Hawthorne effect. Furthermore, the 
increased power burden on the occupant’s smartphone device due to the 
mobile application also reduces the likelihood of widespread adoption. 
Due to these limitations, past occupancy studies are often limited in their 
participation rates, thereby reducing the generality and validity of the 
data collected. 

In an attempt to reduce the intrusiveness of such studies, recent 
papers have started exploring occupancy detection systems that adopted 
less intrusive methods. Park et al. [20] proposed a non-invasive Blue-
tooth-based occupancy detection system that detects the number of 
discoverable Bluetooth devices in an area before mapping them to the 
room’s occupancy level using a carefully calibrated ratio While the 
method does not require the occupants to install any specific software on 
their devices, recalibration of the ratio must be performed between 
different buildings and over time due to the changing ownership pat-
terns of Bluetooth devices. This limitation reduces the scalability of the 
method. The method proposed by Tekler et al. [21] leverages the 
existing BLE technologies found in the occupants’ smartphone devices to 
track the occupants’ movement patterns using BLE beacons. Unlike 
many existing methods, the proposed method does not require the 
installation of a mobile application but only requires the occupants to 
provide their devices’ Bluetooth media access control (MAC) address. 
This step is necessary as the Bluetooth MAC address is used as a unique 
identifier to track the occupant’s movement patterns and cannot be 
sniffed unless the device is on “discoverable” mode. An additional 
consideration when collecting the occupant’s Bluetooth MAC address is 
to obtain the true MAC address directly from the occupant’s smartphone 
device, under the “Phone Settings” page. This step is necessary as the 
device’s advertised address might differ from the true address due to the 
MAC randomisation features implemented by the phone manufacturers 
as a security measure. By using the BLE beacons to scan the vicinity for 
the occupants’ Bluetooth-enabled devices, the RSSI values obtained are 
passed through a gradient boosting algorithm to infer the occupants’ 
location, thereby allowing the authors to not only monitor the occu-
pancy levels in each zone but also track the movement patterns of in-
dividual occupants between different zones. 

Given that many of the occupancy detection methods that leverage 
on RSSI values to perform occupant localisation requires the system to 
be trained based on a supervised approach, the scalability of the method 
is limited as a large amount of labelled data needs to be collected for the 
training process every time the detection system is implemented in a 
new study area. Therefore, by proposing a semi-supervised approach 
when developing the occupancy detection method, we can improve 
upon the method proposed by Tekler et al. [21] by reducing the amount 
of labelled data needed, thereby increasing its scalability. 

3. Methodology 

3.1. Data collection 

The implementation of the proposed occupancy detection method 
takes advantage of the existing BLE technology found in modern 
smartphone devices, combined with the usage of BLE beacons, to 
perform indoor localisation without the need for a mobile application. 
The BLE beacons, used in this study, are built using Raspberry Pi 3 Model 
B’s which are relatively inexpensive and widely available. By pro-
gramming the BLE beacons to scan the vicinity for the occupants’ 
Bluetooth-enabled smartphone devices based on their MAC addresses, 
the presence of any neighbouring devices was recorded by storing the 
device’s Bluetooth MAC address, RSSI value, as well as the current 
timestamp, on the BLE beacon. The recorded information can also be 
sent wirelessly via a WIFI connection to a centralised server to be stored 
for further processing. 

The RSSI value can be interpreted as a unit of measurement that 
represents the relative quality of a received signal from a device. While a 
single RSSI value may not provide reliable estimations of the distance 

between two devices, the combination of multiple RSSI values can 
provide a reasonable indicator, especially when combined with 
advanced machine learning approaches. 

3.2. Data pre-processing 

Once the information had been recorded and stored on the BLE 
beacon, it was extracted and consolidated with the information from 
other BLE beacons deployed in the study area. Using the MAC address as 
a unique identifier, the RSSI values corresponding to a particular 
occupant were filtered out and sorted based on the timestamp infor-
mation. Each entry, which contains a single RSSI value, was converted 
into an RSSI tuple ðx1; x2; x3;…; xnÞ where each xi, i ¼ 1;…; n, corre-
sponds to the RSSI value recorded by a particular BLE beacon deployed 
in the study area for a particular occupant and unique timestamp. Since 
the scanning patterns of the BLE beacons were not synchronised, the 
formation of the RSSI tuple resulted in the presence of missing values 
which were imputed based on the last RSSI value recorded by each 
corresponding BLE beacon. However, if the last recorded RSSI value 
occurs beyond a user-defined time window, the missing values were 
instead imputed by an arbitrarily large RSSI value. This imputation 
strategy is based on our observations that occupants tend to remain 
stationary for the majority of the time while they were in the office. 
Therefore, an RSSI value received by a particular BLE beacon should 
remain valid for a short time after it has been recorded. An opposite 
argument holds when a particular BLE beacon is unable to detect an 
occupant’s device for an extended period. This event is a strong indi-
cation that the occupant has left the scanning region of the BLE beacon 
and, therefore, is represented using a large RSSI value. While this user- 
defined time window can be adjusted based on the mobility patterns of 
the occupants, we observe that a window between 1 and 2 min is a 
reasonable value for the cases we studied. By performing the series of 
data pre-processing and imputation steps described above, the resulting 
data follows the dimensions D�M� N, where D represents the number 
of occupants monitored, M represents the number of RSSI tuples that 
were obtained using the BLE beacons, and N represents the number of 
BLE beacons deployed. 

3.3. Model development 

In the following subsections, we will propose a supervised and a 
semi-supervised machine learning model to infer the occupants’ zone- 
level location using the pre-processed data. 

3.3.1. Supervised bluetooth ensemble model 
The supervised Bluetooth ensemble model follows an ensemble 1-vs- 

all architecture by developing a binary classifier for each zone in the 
study area to perform zone-level occupant localisation. By comparing 
the probabilistic outputs of each binary classifier, the classifier with the 
highest probability is identified, and its corresponding location is 
selected as the occupant’s final predicted location. Given that there 
might be a considerable imbalance between the number of positive 
classes (i.e. occupant is present in the zone) and negative classes (i.e. 
occupant is not present in the zone) when training each binary classifier, 
additional steps were taken to overcome the class imbalance issue when 
developing the ensemble model. By splitting the data in the negative 
class into multiple batches, where the size of each batch equal to the size 
of the positive class, a binary classifier is trained on the resulting dataset 
made up of data from the positive class and data from each batch con-
taining the negative class. The combination of these binary classifiers 
results in an ensemble sub-model of binary classifiers for each specific 
zone. Finally, by combining the ensemble sub-models from each zone, 
the final model was made up of multiple ensemble sub-models con-
taining binary classifiers. 

The model’s training process involves the collection of a set of 
labelled data which contained both the RSSI tuples and the 
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corresponding locations of the occupants when the RSSI tuples were 
recorded. This data was obtained by placing several Bluetooth-enabled 
devices at different zones within the study area to collect their corre-
sponding RSSI tuples using BLE beacons. The data collected was pro-
cessed using the steps described in subsection 3.1 and 3.2 and labelled 
based on the corresponding zone locations of the training devices at 
those timestamps. While it is common practice to randomly split the 
labelled data into a training set and a validation set, we observed during 
the study that a BLE beacon can record slightly different RSSI values for 
different smartphone devices even when they are placed in the same 
exact location. Since the model and the operating system of the device 
can contribute to these slight variations, the labelled data is split based 
on the device to result in a train-test ratio of 70:30. This approach is 
taken to accurately represent a real-world implementation of the pro-
posed detection method where it is very likely that the devices used to 
train the Bluetooth fingerprinting model differs from the occupants’ 
actual devices. 

The classification algorithm used in this study was the gradient 
boosting algorithm [46] due to its superior predictive performance over 
other classification algorithms. The algorithm follows an iterative 
functional gradient descent method that minimises its loss function by 
iteratively introducing base learners, defined based on the errors made 
by the current model, to boost subsequent model performance. The 
different models proposed in this paper were optimised via a hyper-
parameter tuning and five-fold cross-validation approach. Given that the 
gradient boosting algorithm also allows us to assign an importance score 
to each input feature, the input features with the lowest importance 
scores were dropped from the final model to prevent model overfitting 
and decrease training time. 

3.3.2. Semi-supervised bluetooth clustering model 
The second machine learning model proposed in this study is 

modified based on an unsupervised clustering algorithm, guided by a 
small amount of labelled data, to perform zone-level occupant local-
isation on a set of unlabelled RSSI tuples. The clustering algorithm used 
in this study was the K-means algorithm due to its popularity and ease of 
implementation. The K-means algorithm begins by specifying the 
number of clusters K that can be found in the dataset. In this case, K was 
user-defined and based on the number of zones demarcated within the 
study area. By randomly selecting K data points as the initial centroids, 
the sum of squared distance between each data point and the centroids 
were calculated. In the next step, each data point was assigned to a 
particular cluster based on the nearest centroid and a new set of cen-
troids were obtained by calculating the average of all of the data points 
that belong to the same cluster. This step was repeated until there is no 
change in cluster assignments for each data point. 

However, given that the K-means algorithm was only able to provide 
a numerical label to the data points that belong to the same cluster, an 
additional step was needed to map each cluster label to a particular zone 
in the study area. This mapping step was achieved by collecting a small 
sample of labelled data from each zone and calculating the centroid of 
these labelled samples. Next, by calculating the Euclidean distance be-
tween a labelled centroid and the cluster centroids, we identified the 
nearest cluster centroid-labelled centroid pair and assigned the corre-
sponding zone label to the data points in that cluster. Additional steps 
were also taken to ensure that each zone was uniquely mapped to a 
particular cluster. Another complication of this approach comes from a 
limitation of the K-means algorithm. As the initial K centroids were 
randomly selected from the dataset, different initialisation of the K 
centroids might result in different cluster labels for the same data point, 
leading to large fluctuations in model performance. This issue has been 
overcome by initialising the K-means algorithm with the labelled cen-
troids described earlier to stabilise the algorithm and ensure that a 
similar prediction is produced every time the clustering algorithm was 
rerun. Furthermore, by initialising the clustering algorithm with the 
labelled centroids, convergence time decreases accordingly. 

3.4. Model evaluation 

Since we are interested in the models’ ability to accurately perform 
zone-level localisation, the resulting models will be evaluated based on 
two evaluation metrics: zone-level accuracy and macro-average f1- 
score. The formulations of both evaluation metrics are provided below. 

Accuracy¼
TPþ TN

TPþ TN þ FPþ FN  

Macro � ave f 1 ¼
2PrecisionmacroRecallmacro

Precisionmacro þ Recallmacro  

where 

Precisionmacro¼

Pl
i¼1

TPi
TPiþFPi

l  

Recallmacro¼

Pl
i¼1

TPi
TPiþFNi

l 

TP, TN, FP, and FN refer to the true positive, true negative, false 
positive and false negative zone-level prediction values, respectively, 
while refers to the number of prediction classes. The macro-average 
precision score can be interpreted as the fraction of true positives 
among the predicted positive instances in a class, averaged over all 
prediction classes. On the other hand, the macro-average recall score is 
interpreted as the fraction of true positives among all correctly predicted 
instances in a class, averaged over all prediction classes. While accuracy 
is a standard evaluation metric used by many researchers, the macro- 
average f1-score, which is the harmonic mean of both macro-average 
precision and recall scores, was also used in this study to provide a 
balanced evaluation of the model’s performance for each class. A 
flowchart summarising the proposed methodology was provided in 
Fig. 1. 

4. Case study 

4.1. Study area description 

The feasibility of the proposed method was demonstrated by con-
ducting a five-week data collection effort in two office spaces, situated at 
an academic building in Singapore. The rationale behind conducting this 
study in two different offices was to ensure the generality of the method 
when encountering different office layouts and to capture a wider range 
of occupancy behaviours. 

Each study area is divided into zones demarcated by a combination 
of physical walls and partition lines for open spaces. Study area 1 spans 
approximately 650 m2 and houses a meeting area, a pantry, two open 
office areas, and several rooms with research equipment. The study area 
is divided into a total of 12 zones, as depicted in Fig. 2, with an addi-
tional zone named “Out” to indicate the absence of the occupant. Study 
area 2 has a smaller area of 248 m2 and contains 8 zones, as depicted in 
Fig. 3, with an additional zone named “Out” to indicate the occupant’s 
absence. The remaining zones include a pantry, a meeting room, a 
printer area, and three open office areas. 

4.2. Study implementation 

During the deployment of BLE beacons, the location of each beacon is 
restricted based on the availability of power sockets in the study area. In 
addition, several general guidelines for beacon deployment were also 
observed to produce good results during the study. The first guideline 
relates to larger-sized zones where the location and number of beacons 
deployed should ensure a complete signal coverage of the area. In 
addition, another guideline states that more beacons should be deployed 
in smaller-sized zones since it is harder for the model to infer the 
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occupant’s location due to the higher resolution. With the deployment of 
more beacons, the increased number of features can help to increase the 
model’s accuracy, while being limited by the number of power sockets 
available in the area. In this case, study area 1 is made up of a mixture of 
larger-sized zones and smaller-sized zones. Hence the number of bea-
cons that are deployed in the larger-sized zones are mostly to ensure 
signal coverage while more beacons are concentrated in the pantry area 
to improve the model’s accuracy. Study area 2, on the other hand, is 
mostly made up of intermediate-sized zones with a few smaller-sized 
zones. Therefore, more beacons are deployed mainly to improve the 
model’s accuracy. As a result, a total of 21 BLE beacons are deployed in 
study area 1, while 18 beacons are deployed in study area 2. 

During the 5-week data collection period, the BLE beacons were 
configured to scan the vicinity of the occupants’ Bluetooth-enabled 
smartphone device during the weekdays to obtain a total of 25 days of 
occupancy data between both study areas. In addition, a total of 60 
occupants from both study areas have agreed to participate in this study, 
resulting in the collection of more than 2 million data points by the end 
of the study period with an average scanning frequency between 1 and 2 
min for each study participant. 

Two researchers were also placed in each study area to manually 
track the zone-level locations of each study participant over the duration 
of 5 working days to obtain the ground truth. The first researcher is 
placed at a strategic location that overlooks the study area and various 
exits while the second researcher is placed at a different location to 
cover any potential blind spots. 

4.3. Descriptive statistics 

Out of the 60 occupants who have agreed to participate in this study, 
we assigned 46 to be permanent occupants, and the remaining 14 as 
temporary occupants. Permanent occupants are defined as occupants 
who have an assigned workspace in the study area while temporary 
occupants are occupants who visit the study area for work-related pur-
poses but do not have an assigned workspace. Table 2 provides a 
detailed breakdown of the different occupant types, arranged based on 
their designations and study area. 

4.4. Model comparison results 

Table 3 describes the overall accuracy and macro-average f1-score of 
both supervised and semi-supervised models for both study areas. It can 
be observed that the supervised ensemble model was able to outperform 

the semi-supervised clustering model both in terms of overall accuracy 
and macro-average f1-score for both study areas. The performance of the 
supervised ensemble model is further validated by processing its output 
to generate the predicted occupancy levels in both study areas and 
plotting it against the ground truth over five working days. It can be 
observed from Fig. 4 that the predicted occupancy level closely matches 
the true occupancy level recorded over the observation period. 

As the ensemble model is made up of a combination of multiple 
ensemble sub-models, each of these sub-models was optimised to 
improve their performance via hyperparameter tuning and feature se-
lection. While this required us to search over a much broader feature 
space to identify the optimal set of hyperparameters and input features 
to include in the final model, this also allowed us to achieve a much 
lower error rate. Another reasoning behind this performance could also 
be attributed to the removal of noise during the feature selection step. By 
dropping the least significant set of input features from each zone-level 
sub-model, this step decreases the likelihood of overfitting by reducing 
model complexity. Finally, it should be noted that the layout of the study 
area has an influence on model performance as the supervised ensemble 
model reported different performances in both study areas. 

Another notable observation from Table 3 is the poor performance of 
the proposed semi-supervised approach when applied to the same 12 
zones in study area 1. The prediction results were visualised using a 
confusion matrix in Fig. 5, where the columns represent the instances in 
each predicted class and the rows represent the true classes of each 
instance. Given that the correct predictions will be located in the diag-
onal of the matrix, it was observed that the clustering model commonly 
misclassifies zones that are adjacent to each other. This observation is 
particularly true for the three zones found in the pantry area as well as 
the area covering the office areas and the printer. Due to this observa-
tion, we improved the semi-supervised model’s accuracy by merging 
these adjacent zones together to form a single zone for the pantry area, 
as well as a combined zone for the office area, to result in a total of 9 
zones in study area 1. 

While the resulting performance of the semi-supervised model is still 
lower than the supervised ensemble model (refer to Table 3), the prac-
tical advantages of the semi-supervised approach are clear as it only uses 
a small fraction of the labelled data and training time when compared to 
the supervised ensemble model. Furthermore, by experimenting with 
different number of labelled samples used when calculating the labelled 
centroids, we were able to achieve consistency in model performance 
when the number of labelled data reaches a value of 15 for each zone. 
This is equivalent to less than 4% of the total number of labelled data 

Fig. 1. A flowchart of the proposed methodology.  
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used in training the supervised ensemble model. 
The choice between the supervised ensemble model and the semi- 

supervised clustering model can be viewed as a trade-off between ac-
curacy and scalability. Therefore, while the semi-supervised clustering 
model has clear practical advantages in real-world applications, we will 
apply the supervised ensemble model in both study areas to obtain the 
occupancy information needed for subsequent analysis due to its higher 
accuracy. The purpose of performing the subsequent analysis using the 
inferred occupancy information instead of the ground truth is to 
demonstrate the value of the proposed method by showing the different 
types of analysis that could be conducted based on the data collected. 

Fig. 2. Layout of study area 1 (n ¼ 28).  

Fig. 3. Layout of study area 2 (n ¼ 32).  

Table 2 
Detailed breakdown of study participants based on occupant type, designations, and study area.   

Occupant Type (n) Designation Type (n) 

Grad Student Post-Doc Design Engineer Researcher Staff Faculty 

Study Area1 (28) Permanent Occupants (18) 3 1 5 7 2 0 
Temporary Occupants (10) 4 2 3 1 0 0 

Study Area 2 (32) Permanent Occupants (28) 11 4 0 2 6 5 
Temporary Occupants (4) 0 0 1 0 2 1  

Table 3 
Model performance for the supervised and semi-supervised models when 
compared to the ground truth (Study Area 1 and 2).  

Model Supervised Bluetooth Ensemble 
Model 

Semi-supervised Bluetooth 
Clustering Model 

Study 
Area 1 
(12 
Zones) 

Study 
Area 1 
(9 
Zones) 

Study 
Area 2 
(8 
Zones) 

Study 
Area 1 
(12 
Zones) 

Study 
Area 1 
(9 
Zones) 

Study 
Area 2 
(8 
Zones) 

Accuracy 0.81 0.91 0.85 0.60 0.79 0.82 
Macro- 

average 
f1-score 

0.73 0.85 0.85 0.56 0.71 0.82  
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4.5. Occupancy patterns analysis 

Based on the occupancy information obtained at the end of the study 
period, the occupancy levels for the permanent and temporary occu-
pants in both study areas are visualised in Fig. 6, in the form of an oc-
cupancy density graph. The graph indicates the average percentage of 
study participants who are present in their respective study areas with 
time. 

A comparison of the occupancy density graphs of the permanent 
occupants in both study areas showed some notable differences. It is 
observed that most permanent occupants in study area 2 follow regular 
office hours (9 a.m.–6 p.m.) while some of the permanent occupants in 
study area 1 follow flexible working schedules, with a significant mi-
nority staying after office hours. Furthermore, the occupancy patterns 
for the temporary occupants in both study areas also differ slightly in 

terms of the time of peak occupancy but generally follows the same 
triangle-shaped distribution. Based on the detailed breakdown of the 
occupants’ designation type provided in Table 2, a significant portion of 
the occupants in study area 2 are administrative staff and faculty 
members who might prefer to follow more regular working hours while 
the occupants in study area 1 are mostly comprised of researchers and 
design engineers. As the differences in occupancy patterns between both 
study areas may be attributed to the disproportion in the occupants’ 
designation types, it would be beneficial to merge the occupancy in-
formation from both study areas to obtain a more balanced distribution, 
thereby capturing a comprehensive set of occupancy profiles. 

The merging process is conducted by relabeling the occupants’ 
inferred zone-level location into one of the following five zones: Desk 
Area, Pantry, Printer, Meeting Room, and Other Work Areas. These new 
zone labels allow us to take into account different office layouts as well 

Fig. 4. The predicted occupancy levels in study area 1 (top) and study area 2 (bottom), plotted against the ground truth over five working days. The supervised 
ensemble model was used to infer the occupancy levels. 

Fig. 5. Confusion matrix for semi-supervised clustering model for Study Area 1 (12 zones).  
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as the relative location of the occupant based on their assigned work-
stations. Therefore, when comparing between occupants who are seated 
in different zones of the office, their occupancy information, especially 
the fraction of time spent in each zone, remains comparable despite their 
different seating arrangements. 

By combining the occupancy information of all permanent and 
temporary occupants from both study areas, the resulting occupancy 
density graph, depicted in Fig. 7, showed many notable differences from 
the ASHRAE Standard 90.1–2004. It is observed that the resulting oc-
cupancy density graph reflected the dynamic schedules of the occupants 
by recording a lower maximum occupancy density value of 0.6, while 
the ASHRAE standard assumes that the office will be mostly occupied 
(95%) for most of the office hours. The recorded change in occupancy 
levels during the start and end of each day are also less steep when 
compared to the ASHRAE standard, thus supporting the claim that most 
occupants exhibit diverse behaviours from each other. Finally, the 
recorded occupancy patterns showed more frequent instances where 
occupants stayed longer or returned to the office after regular office 
hours to resume their work. This observation is not adequately repre-
sented in the ASHRAE standard. 

When comparing the occupancy patterns between the permanent 
and temporary occupants, there are many differences, in terms of their 
first arrival time, last departure time, as well as their average visiting 
frequencies based on a 5-day work week. It is observed from Fig. 8 that 
the permanent occupant’s first arrival and last departure times can be 
represented by two distinct peaks, while most temporary occupants tend 
to arrive early afternoon and depart uniformly throughout the rest of the 
day. In terms of the occupants’ weekly visiting frequency, a small group 
of occupants are observed to have surprisingly low visiting frequencies 
which could be attributed to flexible working schedules and the rise in 
employees opting to work remotely from their assigned workstations. 
On the other hand, a small minority of temporary occupants are 
observed to have surprisingly high visiting frequencies which could 

indicate a particular dependency on certain facilities or occupants to 
perform their daily roles. 

Finally, Fig. 9 reflects the fraction of time both permanent and 
temporary occupants would spend at different zones in the study area. 
As expected, most permanent occupants will spend the majority of their 
time working at their desk area and the remainder of their time evenly 
divided between the pantry, meeting room, and other work areas. On the 
other hand, temporary occupants tend to spend most of their time either 
at the pantry, meeting room or other work areas. Based on these occu-
pancy patterns, we can assume several reasons behind the temporary 
occupants’ visit, which include attending a meeting, joining a friend for 
lunch at the pantry, approaching other occupants at their desks for 
work-related discussions, or using certain research facilities. 

4.6. Occupancy profiles 

By taking advantage of the detailed occupancy information obtained 
through the proposed method, the final output of this study is to identify 
a set of occupancy profiles that generalizes the different types of occu-
pancy behaviours observed in a university office environment. 

In this study, occupancy profiles are developed at two different 
levels. The first level expresses the occupancy information in terms of 
the presence of the occupant in the office. Therefore, occupancy infor-
mation is represented in a binary format where a value of 0 indicates 
that the occupant is out of the office, and a value of 1 indicates that the 
occupant is present. The occupants’ presence information for each day 
will form a single data point consisting of 1440 input features (due to 
1440 min in a day) and be fed into a clustering algorithm to identify 
similar presence profiles. 

The second level expresses the occupancy profiles at the occupant 
level, whereby the occupant’s movement patterns over the study period 
are summarised based on several descriptive statistics and passed into 
the clustering algorithm as input features. 

The clustering algorithm that is used to generate the different oc-
cupancy profiles is the K-means algorithm, and the optimal number of 
clusters K is determined based on the Davies Bouldin Index (DBI) [47]. 

4.6.1. Presence profiles 
Presence profiles are most useful and informative when the occu-

pants’ movement patterns do not differ significantly between each day. 
Thus, the permanent occupants’ daily presence information is ideal for 
developing such profiles and will be the focus of this subsection. By 
passing the permanent occupants’ daily presence information through 
the K-means algorithm and calculating the corresponding average DBI 
score when K is varied between 2 and 10, it can be observed from Fig. 10 
that the DBI score is lowest when K equals to 3. Therefore, the optimal 
number of clusters K is chosen to be 3 for the permanent occupants. 

By clustering the permanent occupants’ daily presence information 
into three distinct profiles, we can compare the occupancy density 

Fig. 6. Occupancy density graphs of permanent and temporary occupants in 
both study areas. 

Fig. 7. Combined occupancy density graph for all occupant types compared 
with the ASHRAE standard for medium offices. 
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graphs of each profile in Fig. 11. Profile 2 (46.2%) follows the occupancy 
patterns of a regular office worker who comes to work in the morning at 
around 9 a.m.–10 a.m., takes a lunch break between 12 p.m. and 1:30 p. 
m., and leaves the office for the day between 6 p.m. and 10 p.m. Profile 1 
(37.3%) seems to follow a similar occupancy pattern to Profile 2 in terms 
of the first arrival and last departure time but reports an average occu-
pancy density between 0.2 and 0.4. This result is significantly lower as 
compared to Profile 2, which reported an average occupancy density 
between 0.6 and 0.8 during office hours. This observation could be 
attributed to the occupants’ flexible work schedules or occupants who 
follow regular office hours but are continually moving in and out of the 
office due to external commitments. Finally, Profile 3 (16.5%) reflects 
an occupancy density graph of an occupant who has a first arrival time 
between 9 a.m. and 2 p.m., and last departure time between 11 p.m. and 
3 a.m. in the next morning. Given the wide range of the first arrival time 
and last departure time, these office workers tend to follow more flexible 
work schedules that deviate from the regular office hours. Therefore, 
based on these observations, we will label the occupants that fall under 
Profile 1 as Mobile Workers, the occupants in Profile 2 as Regulars, and 
the occupants from Profile 3 as Flexi-Timers. 

4.6.2. Occupant profiles 
As we have concluded in subsection 4.5 that the temporary occu-

pants’ visits tend to be purpose-driven and are not dependent on the 
time of day, their movement patterns are best represented using 
different descriptive statistics such as visiting frequency, and the frac-
tion of time spent in different zones in the office. In the case of tempo-
rary occupants, they are assumed not to have access to the printer, nor 
do they have an assigned desk area, as defined in subsection 4.3. 
Therefore, the fraction of time spent in these areas are assumed to be 
zero and do not need to be considered. By passing these descriptive 
statistics into the K-means algorithm as input features, the correspond-
ing average DBI score is computed for each K value as K is varied be-
tween 2 and 10. Since the DBI score was the lowest when K equals to 5, 
the temporary occupants will be grouped based on five distinct clusters, 
as depicted in Fig. 12. 

Based on a comparison of the different occupant profiles obtained 
through the clustering algorithm, we observed that temporary occupants 

Fig. 8. First arrival, last departure and visiting frequencies of permanent and 
temporary occupants. 

Fig. 9. Fraction of time spent in each zone for permanent and tempo-
rary occupants. 

Fig. 10. A plot of the corresponding average DBI score (over 10 iterations) 
when the number of clusters K is varied between 2 and 10. 
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in Profile 1 (28.5%) and Profile 2 (21.4%) tend to visit the study areas 
more frequently than the other occupants over a 5-day work week, with 
the occupants in Profile 3 (14.3%) and Profile 4 (14.3%) spending most 
of their time in the pantry area and meeting room, respectively. While 
the occupants in Profile 2 and Profile 5 (21.4%) differ in terms of their 
visiting frequencies, they are similar in terms of the fraction of the time 
spent in the other work areas. The occupants in Profile 1 seem to visit the 
study area for multiple reasons as they spend their time evenly between 
the pantry, meeting room, as well as other work areas. Therefore, based 
on all of these insights, we will label the temporary occupants in Profile 
1 to Profile 5 as Mixed Visitors, Frequent Visitors, Lunch Buddies, Meeting 
Attendees, and Rare Visitors, respectively. 

5. Conclusion 

In this study, we proposed a scalable and less intrusive occupancy 
detection method that leverages existing Bluetooth Low Energy (BLE) 
technologies found in smartphone devices to perform zone-level occu-
pant localisation, without the need for a mobile application. The pro-
posed method uses a network of BLE beacons to record the received 
signal strength indicator (RSSI) values of neighbouring devices which 
were consolidated and pre-processed to obtain a set of RSSI tuples. These 
RSSI tuples were passed into a machine learning model to infer the oc-
cupant’s zone-level location. A supervised ensemble model and a semi- 
supervised clustering model were proposed and evaluated against the 
ground truth to identify the best performing model. The feasibility of the 
proposed method is demonstrated during a five-week case study 
involving two office spaces in an academic building in Singapore. While 
the supervised ensemble model produced the best performance in terms 
of overall accuracy and macro-average f1-score, the semi-supervised 
clustering model demonstrated practical advantages as it was able to 
produce a reasonable performance while using a fraction of the training 
data (<4%) and training time needed when compared to the supervised 
model. 

Based on the occupancy information obtained using the supervised 
ensemble model, we further demonstrated the value of the proposed 
method by performing a series of analysis to identify a set of occupancy 
profiles to generalise the types of behaviours observed in the study area. 
The occupancy profiles are generated based on the occupants’ presence 
information (presence profiles) as well as a summary of the occupant’s 
movement patterns (occupant profiles). The K-means algorithm is used 
to cluster the occupants’ movement information, and the optimal 
number of clusters K is determined based on the Davis-Bouldin Index 
(DBI). As a result, we identified three distinct presence profiles for 
permanent occupants and five unique occupant profiles for temporary 
occupants. Based on the outputs of this study, facility managers will 
have a better understanding of the other types of occupancy information 
that can be obtained through the implementation of the system, allow-
ing them to manage the operations of their buildings better. 

Furthermore, while the occupancy profiles are obtained based on a small 
sample size of 60 occupants, the scalability of the proposed method al-
lows the study to be easily implemented to other office spaces, thereby 
allowing us to extract realistic profiles that can be used as inputs into 
OB-centric models, given a sufficiently large sample size. 
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